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Turbulent flows and Reynolds number

 Asthe Reynolds number increases, so does the range of scales

Re. — ) _ ou,
v/ur v

e Thatis, the spectrum broadens
We will focus primarily on the one-dimensional spectrum of u’

W:/ E(k:)dk:/ kE(k)dlogk
0 0

Delo, Kelso & Smits (2004) Corke, Guezennec & Nagib (1980)



¢uu/(€V5)1/4

¢uu/(€V5)1/4

Turbulent spectra

Boundary layer:
Re, = 6000; 10,000; 14,500; 20,000

Dissipation from isotropic estimate:

£= 151// k2 Gyudk
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n=07)e)!

Inertial region grows with Reynolds
number and with distance from the wall
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Samie et al. (2018)
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Boundary layer:

Re,

= 6000; 10,000; 14,500; 20,000

7 = / B(k)dk = / kE(K)dlog k
0 0

Small scale motions independent of
Reynolds number

Large scales present even very close to the
wall

Energy in large scales grows with Reynolds
number

Samie et al. (2018)



Comparing pipe and boundary layer
Pipe
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Vallikivi, Ganapathasubramani & Smits (2015)



Comparing boundary layer and pipe
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Premultiplied energy and dissipation spectra
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Premultiplied spectral maps

Re, = 5000, boundary layer

Inner spectral peak

/

With thanks to Nick Hutchins

@\\

{f 1"“t’t\‘\\

R 5
"\ﬂ «?’

Outer spectral peak

/

;41‘
“\

Inner spectral peak

/

/s 10

Outer spectral peak

Ao /6



102

Premultiplied spectral maps
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X Mathis et al. (2009)

V — Wake Region

[T — Mesolayer

I— Linear Sublayer
II — Buffer Layer

IV — Inertial Sublayer
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The structure of wall-bounded turbulence
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The structure of wall-bounded turbulence
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Hairpin vortices

Downstream light plane

Ree =600

Ree =1700

\

Theodorson (1952, 1955)
Reg = 9400

Head & Bandyopadhay (1981)



Vortex packets

-

Head and Bandyopadhyay [1981].
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{a) Examples of features with interface inclined at approximately 20° to surface.
(b) Example of 20° interface at Rey = 17500 (this is & composite of two frames because of the
restricted length of the light plane).

Adrian, Meinhart & Tomkins (1991)



Visualizations of coherent motions

Adrian, Meinhart, Tomkins (1999)

Wu & Moin (2009)

Figure 19 Ilustrative example of large-scale structure of hairpin vortex packets at Reg= 7705. The solid lines
are contours of constant streamwise velocity at 61% and 79% of the free stream velocity.
The velocity field in the lower plot has Uc=0.75U.. subtracted and gray levels indicate
swirling strength. The upper plot of the inset region has Uc=0.75U.. subtracted, and gray-
levels indicate fluctuating spanwisc vorticity.




Uniform momentum zones (UMZ)

Re, = 2600

Re, ~ 8000
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Uniform momentum zones (UMZ)

Re, =~ 2600

. , Re, ~ 8000
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Coherent motions in wall-bounded turbulence

Sublayer streaks
yT <10
T &~ 1000
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Cantwell, Coles & Dimotakis (1978)



Coherent motions in wall-bounded turbulence

Sublayer streaks
yT <10

xT ~ 1000 Hairpin vortices

yT > 100, 45°
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Cantwell, Coles & Dimotakis (1978)

Theodorsen (1952)



Coherent motions in wall-bounded turbulence

Sublayer streaks
yT < 10
T &~ 1000

Hairpin vortices
yT > 100, 45°

Theodorsen (1952)

Head &
Bandyopadhyay
(1981)

Vortex packets
or LSM, 15 — 20°

Adrian, Meinhart & Tomkins (1991)



Coherent motions in wall-bounded turbulence

Sublayer streaks
yT < 10
xT ~ 1000

N

VIR
Monty, Stewart, Williams & Chong (2007)

Hairpin vortices
yT > 100, 45°

Kim & Adrian (1999)

VLSM, or

Superstructures,

10-25R

Hutchins & Marusic (2007)

Head &
Bandyopadhyay
(1981)

Vortex packets
or LSM, 15 — 20°

Adrian, Meinhart & Tomkins (1991)



Attached eddy concepts

Sth hierarchy

4th hicrarchy

3rd hierarchy

Random distribution of horseshoe vortices, from Perry and Chong's (1982)
model of a turbulent boundary layer.

2nd hierarchy

Hierarchical model of outer layer

tu rbu |ence USI ng A-eddles Symbolic representation of a discrete system of geometrically
similar eddy hierarchies from Perry and Chong [1982].
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Adrian, Meinhart & Tomkins (1999) Woodcock & Marusic (2015)



Scaling the turbulence: the Attached Eddy Hypothesis

Townsend: “It is difficult to imagine how the presence of

the wall could impose a dissipation length-scale
proportional to distance from it unless the main eddies
of the flow have diameters proportional to distance of
their “centres” from the wall, because their motion is
directly influenced by its presence. In other words, the
velocity fields of the main eddies, regarded as persistent,
organized flow patterns, extend to the wall and, in a
sense, they are attached to the wall.”

Direction of flow

FTTTTITTT T e T T I T rrTrrrrTrTresy

Townsend (1976)



Scaling the turbulence: the Attached Eddy Hypothesis

Townsend: “It is difficult to imagine how the presence of
the wall could impose a dissipation length-scale
proportional to distance from it unless the main eddies
of the flow have diameters proportional to distance of
their “centres” from the wall, because their motion is
directly influenced by its presence. In other words, the
velocity fields of the main eddies, regarded as persistent,
organized flow patterns, extend to the wall and, in a
sense, they are attached to the wall”

Direction of flow

Townsend (1976)

Perry: In this theory, wall turbulence is considered to
consist of a 'forest' of randomly positioned horseshoe,
hairpin or A-shaped vortices that lean in the

streamwise direction and have their legs extending to
the wall.

Theodorsen (1952)

Perry & Chong (1982)



Townsend Attached Eddy Model

The model is inviscid (high Reynolds number), and considers a superposition of
geometrically self-similar, attached eddies

The eddies cover a wide range of scales, but each scale is proportional to the distance
from the wall

The eddies have the same characteristic velocity scale

At high enough Reynolds number, the model is designed to give —m/uf =1

Model applies in the constant stress (logarithmic) region



Townsend Attached Eddy Model

The model is inviscid (high Reynolds number), and considers a superposition of
geometrically self-similar, attached eddies

The eddies cover a wide range of scales, but each scale is proportional to the distance
from the wall

The eddies have the same characteristic velocity scale

At high enough Reynolds number, the model is designed to give —m/uf =1

Model applies in the constant stress (logarithmic) region

)

The model then predicts: 4 B, —A/In (Q)
u? J
02
R
w? y y
u_72_ = Bg — A3 ln (5)



Perry & Chong Attached Eddy Model

* The modelis largely similar to Townsend’s, but eddy shapes can be specified

* The eddies are grouped into hierarchies, and each hierarchy scales with the distance
from the wall

* The number of eddies per unit area scales with 1/y2

Perry, Henbest
& Chong (1986)

Perry & Chong (1982)




Perry & Chong Attached Eddy Model

* The model is largely similar to Townsend’s, but eddy shapes can be specified

* The eddies are grouped into hierarchies, and each hierarchy scales with the distance
from the wall

 The number of eddies per unit area scales with 1/y2

The model then predicts: au % 5 og-law
g
dy Ky
2
And it is consistent with: wo_ B, —A;In (g)
u? 0
02
z =
w? 4 Y
w2 = Ba— A (§)

(see also Marusic and Monty, Annual Reviews, 2019)



Connection to the spectrum

(@)
Viscosity-
S — Motions that are independent of viscosity dependent ——
(i.e. Townsend’s Reynolds-number-similarity hypothesis) motions
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Perry & Abell (1977), Perry, Henbest & Chong (1986)



Connection to the spectrum

@ Outer scaling
Viscosity-
lt—— Motions that are independent of viscosity dependent — 4 k, g D, (k,dg)
(i.e. Townsend’s Reynolds-number-similarity hypothesis) motions 1 B l}l’ 1°E
r
@,k 4g) _ Dk, ) _ |
re— MU: =gk, dg) —> e ot = gy(ky ) — - log ¢u(kl AE) : kl z= ._PAE
—_—— z
(‘Outer-flow” scaling) (Kolmogoroff scaling) v |
|
| Aypseis .
| |
0 kdg=F kz=P kz=N  knq=M Tk, { |
or kyz = Mk-iz} | |
| f NS
i B S S R : L
log (k, 4¢) log (k, 4¢)
Dy,(k, 2) - . .
B = el Log-log Premultiplied

(‘Inner-flow’ scaling)



Connection to the spectrum

@ Outer scaling
Viscosity-
lt—— Motions that are independent of viscosity dependent — 4 k, g D, (k,dg)
(i.e. Townsend’s Reynolds-number-similarity hypothesis) motions 1 B l}l’ 1°E
r
@,k 4g) _ Dk, ) _ |
re— MU: =gk, dg) —> e ot = gy(ky ) - ]og ¢n(kl AE) : kl z= ._PAE
—_—— z
(‘Outer-flow” scaling) (Kolmogoroff scaling) U? |
|
| |
0 kdg=F kz=P kz=N  knq=M Tk, { |
or kyz = Mk-iz} | |
| f NS
wpont ™ Fmgon (2 = 2U,/¥) . log F
log (k, 4¢) log (k, 4¢)
@,,(k, 2) _ . .
B = el Log-log Premultiplied

(‘Inner-flow’ scaling)



Connection to the spectrum

spectrum | > — =B;—A;In

integrate u2 ( y

For high Reynolds numbers, V(y™) — 0



Superpipe turbulence data (NSTAP)
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Hultmark , Vallikivi, Bailey & Smits (2012)



Growth of the inner peak

Inner Scaling
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Inner peak
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DNS: Lee & Moser (2019)
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A universal log law for turbulence
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A universal log law for turbulence

Smooth

-3 10—2
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Second order moments of U’

Hultmark, Bailey, Vallikivi & Smits (2013)
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A universal log law for turbulence

Smooth

Vu*t = Dy — 1.981og [%]

V't = Dy — 2.00log [%]
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1.25v/3 = 2.16 (Gaussian expectation)
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Meneveau & Marusic (2013)
Hultmark, Vallikivi, Bailey & Smits (2013)



3.0

2.5

2.0

1.5

1.0

0.5

0.0 -

What about the other stresses?

Spanwise component
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Spanwise component: channel
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Spanwise component: channel
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Wall-normal component: channel

Wall-normal component
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Shear stress: channel

Shear stress
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Shear stress: boundary layer
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Spectral scaling: what about -5/37?
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Spectral scaling: what about-5/37
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Spectral scaling: what about-5/37

Boundary Layer
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Spectral scaling: what about-5/37
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What about -17
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1.25

Pre-multiplied-1 spectra: Re, ~ 5000

Boundary Layer

Vallikivi, Ganapathasubramani & Smits (2015)



Pre-multiplied-1 spectra: Re, ~ 5000

Boundary Layer

0.001 < y/§ < 0.5

Vallikivi, Ganapathasubramani & Smits (2015)



Pre-multiplied-1 spectra: Re, ~ 70,000
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Inner Scaling
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VLSMs and superstructures

Boundary Layer

kS 0.001 < y/6 < 0.5

* Significant fraction of the energy is contained in region A <
* Energy associated with these motions in pipe flow called “Very Large Scale Motions”
* In boundary layers they are often called “superstructures”

v [ur, Re, = 3472
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Influence of outer layer motions on inner layer motions

* The outer region in the turbulent stress distributions scale with the outer length scale g, h, R
* Theinnerregion has a mixed scaling, indicating the influence of outer scale motions on inner scale motions
* The outer scale motions modulate and superimpose on the inner scale motions

Rao, Narasimha & Badri Narayanan (1971) tUso /8

Blackwelder & Kovasznay (1972) _ 0 5 10 15 20 25 30 35 40 45
Brown & Thomas (1977) +o
Alfredsson & Johansson (1984) o
Bandyophadyay & Hussain (1986) J\;
Wark & Nagib (1991) 1
DeGraaff & Eaton (2000) Ts 0
Metzger & Klewicki (2001) -1 . . .
Abe, Kawamura & Choi (2004) 0 1000 2000 3000
Hoyas & Jimenez (2006) Mathis et al. (2013) T

Hutchins & Marusic (2007) Re, = 4480
Schlatter et al (2009)
George & Tutkun (2009) . . .
Chung & McKeon (2010) Outer scale motions modulate and superimpose on near-wall motions
Buschmann & Gad-el-Hak (2010)

and others..

Log region

At the wall

4000 5000 6000 7000

Marusic et al. (2010)



DNS: Re, = 2003; Hoyas & Jimenez (2006)

Outer region u' (+ve and -ve)

Near-wall region
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Outer region
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Wall-shear stress spectra with increasing Reynolds number

Re, ~ 103 Re, ~ 104
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Mathis et al. (2013)
Chandran et al. (2020)

We consider T* < 350 to be associated with inner-scaled motions, and T* > 350 with outer-scaled motions

Outer-scaled motions contribute more and more to the wall shear stress fluctuations with increasing Re;

Targeting outer-scale motions gives new pathway to drag reduction at high Reynolds number (Marusic et al. 2021)



Growth of the inner peak

Re, = 6123, 10100, 14680, 19680

£ \

! DNS (Sillero et al. (2013) '
"l ReT: 2500 \
h ¢

10! 10° N 10° 10*
Y

Superstructures and VLSM

Growth of the inner peak reflects the
influence of the outer layer motions on the
inner layer

Modulation and superimposition

Outer layer scales on &

Inner layer has mixed scaling

Transition between inner and outer regions
often called the meso-layer

Power law in mean velocity



POD analysis of VLSM

Pipe flow
Rer =354 RN o
\1‘:\\(!?&&“ A v
y=0.2 : """»‘hm

Hellstrém et al. (2011, 2015, 2016), Hellstrém & Smits (2014) YIR Monty, Stewart, Williams & Chong (2007)
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We expect the VLSM to be the most energetic structures
First 16 modes come in pairs
The first 10 modes contain 15% of total energy

Integrated energy



POD mode contribution to shear stress

o First 10 most energetic
modes also contain 43% of
the integrated Reynolds
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POD mode contribution to shear stress

o First 10 most energetic
modes also contain 43% of
the integrated Reynolds
shear stress

« Superposition of the first
few most energetic modes
may reconstruct the
structures
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Reconstructed POD modes

Reconstructed mode 1
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POD mode superposition

Superimposed 4 modes
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&, (m) - Scaled mode energy
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&, (m) - Scaled mode energy

Ordering by azimuthal mode

Energy content of the first 15 azimuthal modes
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Positive contribution to the
Reynolds shear stress, (-u'v')

Azimuthal mode m = (3)

Azimuthal mode number m = (3)

Re, = 2360




Azimuthal mode m = (2)

— — Re, = 2360
Positive contribution to the Azimuthal mode number m = (2) T

Reynolds shear stress, (-u'v')




Azimuthal mode self similarity

(e)

(b) ) ®

FIGURE 3. Contour plots of the streamwise component of sample POD modes for Re; = 2460, where
white and black represent positive and negative values, respectively. The streamlines indicate the in-plane

component of the POD modes, @) (m; 7). (a) @) (5;r); (b) @1 (15;7); (c) @@ (5;7); (d) @@ (15;7); (e)
oC)(5;r); (0 @3 (15; 7).

(2) (b)

FIGURE 4. Activity of the POD modes in the instantaneous velocity field. (a) the streamwise component of
Q(l)(S;r). (b) and (c) show the instantaneous streamwise velocity fluctuations at data block 6 and images
900 and 2108, respectively. Re; = 2460
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FIGURE 5. Modal peak location for the first POD mode (n = 1) and azimuthal modenumbers m € [1, 64].
A Rep =1330; M Re; = 2460; -+ y,/R = 2nC (kgR)™!, with C = 0.2. Modes with a peak location
y,*,' < 75 are identified with open symbols. The lower abscissa indicates the azimuthal wave number, while
the upper abscissa shows the corresponding azimuthal mode number, for Re; = 2460.



Two-plane PIV

Cross plane
+

Streamwise plane

o 5.5 Megapixel sSCMQOS
30Hz (0.96 R/U)

o 22000 Snapshots

Hellstrém, Ganapathisubramani & Smits (2015)



Cross-correlation of «;(3,¢) with all other coefficients

(a,,l (m1,1) , o, (mg,t-{—’t:))

p(m17m27n17n2)7:) =
|Gy (m1,2)|| || Oy (2, 2) |
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* Within £ R, the structures either remain the same, or they transition to a higher order
POD mode with the same azimuthal mode number but a different radial mode number.



(a)

Conditional mode shown for (m,n) = (3,1)

?ond =<u;(x,1,0,t) | {a™ > afs} >

a™ is the coefficient for O%pop

aov

Instantaneous velocity field

(cross-stream plane)

Conditional mode




Where do the VLSM come from?

Conditional mode m =3

111(3,2)("(""’6) II’(3,3)()("«’9)

Transition between these modes will appear as an azimuthal
phase shift but it is caused by a radial displacement



Where do the VLSM come from?

Conditional mode m =4

Transition between these modes will appear as an azimuthal
phase shift but it is caused by a radial displacement



Conclusions

The dual plane conditional modes show structures
starting at the wall, growing towards the wake region,
detach and vanish.

The structure associated with POD mode d5(")(r,3) exist
for =2R, after which a transition occurs.

The conditional modes show a radial evolution of the
structures.

The VLSM consist of an alignment of 2-3 structures.

The long VLSM wavelength is due to a structure
repetition, rather than azimuthal meandering.

The meandering is primarily due to the superposition
of structures with different azimuthal mode number
(m)




Summary: incompressible pipe and boundary layers

A log-law in turbulence is found to occur in the same region where the log-law in mean velocity is found, in
accordance with AEM, but only for Re* > 10,000

Von Karman constant value needs DNS

A mesolayer exists as a blending region between the wall-scaled region and the y-scaled region (only evident
at high Reynolds number)

Inner peak increases logarithmically with Re_, but slower than expected for AEM

Outer peak appears for Re, > 10,000

Spectra asymptote very slowly to-5/3

No k! region at these Reynolds numbers, not in accord with spectral overlap argument
Number of UMZ’s increases logarithmically with Re*, but slower than hierarchy count

The increasing dominance of the VLSM may be disrupting the AEM at higher Reynolds number
New developments in AEM are extending its range

;
2
= Hellstrom, Sinha & Smits (2011)



Beyond canonical flows

Flat plate zero pg flow, or fully developed pipe/channel flows are canonical but singular cases
Need to move beyond canonical flows

Wall-bounded turbulence includes roughness, pressure gradients, surface curvature, three-
dimensional flows, separation, blowing, suction, etc.

Much work was done in the past, but the last 20 years or so the basic research community
seems to have focused on canonical cases (including me)

We may have reached a point of diminishing returns in studying canonical flows



Questions?




