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Canonical wall-bounded flows
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Plane Couette flow
Fully-developed channel flow of high aspect ratio
Fully-developed pipe flow

Boundary layer, flat plate, zero pressure gradient

Ekman layers, Taylor-Couette flows, Rayleigh-
Bénard convection, ...

All flows turbulent (high Reynolds number) and
free of history effects

Munson video




Canonical wall-bounded flows

* Fully-developed channel flow of high aspect ratio

* Fully-developed pipe flow

Couette flow
* Boundary layer, flat plate, zero pressure gradient

U(y)
channel | -; | pipe

* All flows turbulent (high Reynolds number) and
% free of history effects
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Internal versus external flows

e Internal flows:

— Non-zero turbulent kinetic energy on centerline

— Time sharing of large structures (Dean & Bradshaw 1976)

—  Channel flow: perimeter/area = 1/h (w >> 2h)
—  Pipe flow: perimeter/area = 2/R Wu & Moin (2008)

e External boundary layer flow:

—  Laminar freestream

— Intermittency
—  Sensitive to tripping condition

Corke, Guezennec
and Nagib (1980)

¥

Chung et al. (2015)
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Osborne Reynolds’ experiment

Transition to turbulent flow



Why high Reynolds number?
e Most testing is done at low Reynolds number

* Many engineering applications are at high Reynolds number
e Most theories of turbulence only apply at high Reynolds number

Lab: Re, =103,10* Applications: Re, = 10*,10°

Windpower Engineering Vestas V112 www.newairplane.com



Turbulent flows and Reynolds number

Reynolds number critical parameter in laminar to turbulent transition
Turbulence continues to evolve with increasing Reynolds number

R UL  inertia force L largest eddy size
e = =

v viscous force v/U ~ smallest eddy size




Turbulent flows and Reynolds number

*  Reynolds number critical parameter in laminar to turbulent transition

*  Turbulence continues to evolve with increasing Reynolds number

UL inertia force L largest eddy size

Re = =

v viscous force v/U  smallest eddy size

OU,
Re, =
NG
inner length scale outer length scale

(Re, = Re™)

Ur = Tw/p
(turbulence velocity scale)



Turbulent flows and Reynolds number

*  Reynolds number critical parameter in laminar to turbulent transition
Turbulence continues to evolve with increasing Reynolds number

UL inertia force L largest eddy size

fe= v viscous force v/U  smallest eddy size
d O,
Re, = -
v/ur v
Us | -
3 = =

Delo, Kelso & Smits (2004) Corke, Guezennec & Nagib (1980)



Mean velocity

Fluctuations

Wall distance

The usual scaling

Inner coordinates  Quter coordinates

U Uy, —U
Ut = —
u’l’ uT
2
- ulz . u'
ut =—5  ut =3
u'l' u'l’
P
v 1) R

(ViSCOUS or inner scaling) (outer scaling)




Turbulent boundary layer scaling

U= f(y, Tw, 1t p,0)

e Dimensional analysis:

v




Turbulent boundary layer scaling

U= f(y, Tw, 1t p,0)

Dimensional analysis:
Viscosity important near wall, but not important far from wall (at high Re,)

v




Turbulent boundary layer scaling
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Dimensional analysis
Viscosity important near wall, but not important far from wall (at high Re,)
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Turbulent boundary layer scaling

U= f(ymw%p, 0)

Dimensional analysis:
Viscosity important near wall, but not important far from wall (at high Re,)
= Tw/P)
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Turbulent boundary layer scaling

U= f(y, Tw, 1t p,0)

Dimensional analysis:
Viscosity important near wall, but not important far from wall (at high Re,)

°
°
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Inner scaling: Ut = f(y+) radiante i
overlap region
— at high Re; 1
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Experiments and computations

Air at pressures up to 200 bar
T i 4 - —

lvan Marusic

Princeton Superpipe: 1000 < Re, < 500,000
HRTF: 2600 < Re, < 72,500

HRNBLWT at Melbourne
2000 < Re, < 30,000

Channel flow DNS
Hoyas & Jimenez (2003) Re, = 2000
Lee & Moser (2015) 180 < Re, < 5200

Javier Jimenez Robert Moser



Princeton high Reynolds number facilities

Working fluid is air at pressures up to 200 bar



Superpipe

31 x 10% < Rep < 35 x 109
102 < Re, <5 x 10°




Superpipe

With atmospheric air at 30m/s,
pipe = 3200 m long, 1.6 m diameter

31 x 10% < Rep < 35 x 109
102 < Re, <5 x 10°




High Reynolds number test facility (HRTF)

'Blister' insert

~— Tripwire

1.82 m

8400 < Rep < 235,000
2600 < Re, < 72,500




High Reynolds number test facility (HRTF)

With atmospheric air at 10m/s,
working section = 800 m long, 80 m dia.

'Blister' insert

ﬂ fi— Tripwire E: 049 m 8400 S R@Q S 235’ 000

A 1.82 m

2600 < Re, < 72,500
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Mean velocity: channel flow DNS Re, = 180 - 5200

“Engineering” scaling “Inner” similarity scaling
1.2 30
5200
1.0 25 Re..
52M T
0.8 — 20
Uy 180
0.6 Fer 15
180
0.4 10
0.2 5
0.0 0
0.0 0.2 0.4 0.6 0.8 1.0 1 10 100 1,000 10,000
+
y/o Yy

Data from Lee & Moser (2015)



Mean velocity: channel flow DNS Re, = 180 - 5200

“Engineering” scaling “Inner” similarity scaling
1.2 30
5200

1.0 25
77 5200 U
Ucy, Ur

0.6 Fer 15

180

0.4 10

0.2 5

0.0 0

0.0 0.2 0.4 0.6 0.8 1.0 1 10 100 1,000 10,000
+
y/o Yy

Data from Lee & Moser (2015)
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Mean velocity: channel flow DNS Re, = 180 - 5200

“Engineering” scaling “Outer” similarity scaling
1.2 30
1.0 25

52M

0.8 _ 77 20

. Yor —U \\\‘> 180

Ur
0.6 Cr 15
180
0.4 10 5200
0.2 5
0.0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.001 0.010 0.100 1.000
y/0 y/o

Data from Lee & Moser (2015)
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Mean velocity: channel flow DNS Re, = 180 - 5200

“Engineering” scaling “Outer” similarity scaling
1.2 30
1.0 25
5200
0.8
0.6 Fer
180
0.4
0.2 S
Looks like a log law N
0.0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.001 0.010 0.100 1.000

y/o y/o

Data from Lee & Moser (2015)



Inner scaling revisited at high Reynolds number

* Log-law was derived by matching gradients of

30
velocity in the overlap region [
*  However, if we match velocity gradients and - : E
magnitudes in the overlap region, a power law can be I ]
rived: v : | |
derived U+ = Cl (y+) 20 IR e .
Il+1s O °F W N— i N s T— __
10 : : S _
5 ............................. i
0 A
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A Zagarola & Smits (1998)

Beverley McKeon Mark Zagarola Margit Vallikivi McKeon, Li, Jiang, Morrison & Smits (2004)
Bailey, Vallikivi, Hultmark & Smits (2014)



Inner scaling revisited at high Reynolds number

Log-law was derived by matching gradients of
velocity in the overlap region

However, if we match velocity gradients and
magnitudes in the overlap region, a power law can be

derived: Ut =0, (y+)7

Experiments reveal that a power law joins the viscous
sublayer to the log-law

The log-law begins at y+ = 600
It ends at y/d=0.12

Log-law only appears for Re, > 10,000 (one octave),
or 50,000 (one decade)

30
25!
of
U+155

10}

10° 10! 102 103 10* 10°
+
5 4

Zagarola & Smits (1998)

McKeon, Li, Jiang, Morrison & Smits (2004)
Bailey, Vallikivi, Hultmark & Smits (2014)



Inner scaling revisited at high Reynolds number

Log-law was derived by matching gradients of
velocity in the overlap region

However, if we match velocity gradients and
magnitudes in the overlap region, a power law can be

derived: Ut =0, (y+)7

Experiments reveal that a power law joins the viscous
sublayer to the log-law

The log-law begins at y+ = 600

It ends at y/d=0.12

Log-law only appears for Re, > 10,000 (one octave),
or 50,000 (one decade)

What about x?

Best estimate for pipe flow k = 0.40 & 0.02
Other people find more precise values

Can DNS help?

30
25!
of
U+155

10}

10° 10! 102 103 10* 10°
+
Yy
Zagarola & Smits (1998)

McKeon, Li, Jiang, Morrison & Smits (2004)
Bailey, Vallikivi, Hultmark & Smits (2014)



Indicator function

Channel flow DNS (max Re, = 5200)

1 1 Illllll

(L II[|H|

Re=5200

“\
Iy
S
4
/
, 3
/ t
T
7/ : t
, :
3
3

L1 lllllll

T T TTTT

P
1 1il

102 . 103

Y

DNS by Lee & Moser (2015)



Channel flow DNS (max Re, = 5200)

Indicator function

Power law profiles
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2.2 — | 5 enough to show log-law
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(will probably need DNS at much higher Reynolds number to be more precise)

DNS by Lee & Moser (2015)



(Ue'U)/ Uz

Outer scaling revisited

Dimensional analysis: U= f(y, U, Wy P, 5) (UT = Tw/P)
Assumes one velocity scale for inner and outer regions

Experiments suggest both an inner scale (u,) and an outer scale (uys)
Propose uzs = (6%/0) Uso (Zagarola & Smits 1997; 1998)

In the outer region scale u,s works better than u, at lower Reynolds numbers

o IR © TN
15 o 12 1 4 Beo 31
"" 6r 14 f&) ’.' 3 :
R,
=X % 1
3 '
S |
] 5
%.01 1

Pirozzoli & Smits (2023)



The velocity profile and the friction factor

By integrating the velocity profile, we can obtain a friction factor/Reynolds number relationship

That is, 8 —
A
With outer layer (wake) deviation

—> \/X = (] log(ReD\/— ) 4+ Co @@
inner layer

deviation

Prandtl smooth pipe

= 2.0log(RepV\) — 0.8

o=




Superpipe results

_ 1
0.04 F ﬁ = 2.0log RepvVA—0.38 Prandtl (1935)
0.035 F
-E 1
0-03 F A — =1.9301log RepV A — 0.537  McKeon et. al. (2004)
0.025 3 \/X
- Xx\
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N 1911 k:
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Pipe flow friction: the Moody Diagram
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Two complementary experiments

% ® Princeton Superpipe
% ® Oregon

McKeon et al. (2004)



Turbulent stress scaling

* Dimensional analysis: u;u; = f(y,uT,/L,p, 5) (uT = Tw/p>

e Using the inner/outer overlap argument:

Match amplitudes  w;u; = constant

Match gradients  wu; = B; — A; In(y/9)

Match gradients and amplitudes  w;u; = C;(y/d)™



Turbulent stress scaling

Dimensional analysis: uw;u; = fly, wr, i, p,9) (uT = Tw/p>
Using the inner/outer overlap argument:
Match amplitudes  w;u; = constant

Match gradients  wu; = B; — A; In(y/9) ?

Match gradients and amplitudes — w;u; = C;(y/d)™

As we shall see, different components of the stress tensor follow different scaling
in the overlap region

For example, u2/u2 follows a logarithmic variation, while v2 /u?2 is a constant
No power law behavior has been seen



Turbulent stress levels: channel flow DNS Re, = 5200

Outer scaling Inner scaling
10.0 10.0
un2
wh2
vA2
UV
_2c0 1 1 1 1 -2.0 1 1 1
0.00 0.20 0.40 0.60 0.80 1.00 0.000 0.001 0.010 0.100 1.000 y/5
y/o 0.52 52 52 520 5200 y*

Data from Lee & Moser (2015)



Turbulent stress levels: channel flow DNS Re, = 5200

Outer scaling Inner scaling
10.0 10.0 T
un2
wh2
vA2
UV
_2c0 1 1 1 1 -2.0 1 1 1
0.00 0.20 0.40 0.60 0.80 1.00 0.000 0.001 0.010 0.100 1.000 y/5
y/o 0.52 52 52 520 5200 y*

Data from Lee & Moser (2015)
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Turbulent stress levels: channel flow DNS Re, = 5200

Outer scaling Inner scaling
10.0 T
— /1 < = >
i 8.0 - u2 1 Constant stress region
: —uw/u? =1
|
6.0 - :
|
4.0 - =15
_2:
1 —
| w
2.0 | ,02
|
00 7 T
| S~—
1 1 1 1 -2.0 1 I 1 1
0.00 0.20 0.40 0.60 0.80 1.00 0.000 0.001 0.010 0.100 1.000
?J/ 0 0.52 5.2 52 520 5200

u’2
wh2
vA2

—Uuv
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y-l-

Data from Lee & Moser (2015)



Scaling the turbulence: the Attached Eddy Hypothesis

Townsend: “In other words, the velocity fields of the
main eddies, regarded as persistent, organized flow

patterns, extend to the wall and, in a sense, they are
attached to the wall.”

Townsend (1976)



Scaling the turbulence: the Attached Eddy Hypothesis

Townsend: “In other words, the velocity fields of the " Discctonof low
main eddies, regarded as persistent, organized flow

patterns, extend to the wall and, in a sense, they are

attached to the wall”

Townsend (1976)

Perry: In this theory, wall turbulence is considered to
consist of a 'forest' of randomly positioned horseshoe,
hairpin or A-shaped vortices that lean in the

streamwise direction and have their legs extending to
the wall.

Theodorsen (1952)

Perry & Chong (1982)



Townsend/Perry Attached Eddy Model

The model is inviscid (high Reynolds number), and considers a superposition of geometrically self-
similar, attached eddies

The eddies cover a wide range of scales, but each scale is proportional to the distance from the wall
The eddies have the same characteristic velocity scale
At high enough Reynolds number, the model is designed to give —m/uZ =1

Model applies in the constant stress (logarithmic) region

At high Reynolds number, uT _ B — A In (g) Need accurate

the model then predicts: u? J measurements at high
— Reynolds number
—
u2 ?
w? y
Y By— Asln <—>
u? ? 2T\s



Townsend/Perry Attached Eddy Model

The model is inviscid (high Reynolds number), and considers a superposition of geometrically self-
similar, attached eddies

The eddies cover a wide range of scales, but each scale is proportional to the distance from the wall
The eddies have the same characteristic velocity scale
At high enough Reynolds number, the model is designed to give —m/uZ =1

Model applies in the constant stress (logarithmic) region

At high Reynolds number,

_ _ B, — A In <g)
the model then predicts: )

u?
a2
2
a2
ol
a2



Nano-Scale Thermal Anemometry Probe (NSTAP)

. MEMS construction
. Free-standing Pt ribbon

* 0.1x2pum cross-section
*  30o0r 60 um sensing length
Frequency response > 150kHz

Marcus Hultmark

Bailey et al. (2010)

Vallikivi, Bailey, Hultmark & Smits (2011)
Vallikivi & Smits (2014)

Hutchins, Monty, Hultmark, Smits (2015)



Superpipe turbulence data (NSTAP)

* NSTAP measurements established,
unambiguously for the first time, the
log law in the turbulence

2 =161—-125In (%)

* This is a key result in the Attached Eddy
Model of Townsend/Perry

* Holds for pipes and boundary layers,
with the same slope (A;=-1.25)

Data for y* > 100

o

oo

2 =161—1.25In (%) ]

—Tt 5t Increasing Re™
2000 to 100,000

4 L

3t

2 B !l!

1t L]
0= . ,' .
1073 102 10~} 10°

y/o

Hultmark , Vallikivi, Bailey & Smits (2012)
Marusic, Monty, Hultmark & Smits (2013)
Vallikivi, Hultmark & Smits (2015)



Boundary layer vs. pipe flow

Superpipe HRTF Boundary layer
Ret = 98,000 Re™ = 73,000
35 T . r 10 T T 9
[ | 3=+l
30 ) 8
U_|_ ‘I - m_*_ 0
25 Fluctuations ML 16 )
U-i—
20 1 20
15 o '-'- 2 ®
- ) 15 F |
&° o o’ r 41
10 oo 0 ) .k
1 L il 1 L P il i ]]:' 1 111l 1 . 1 b1l 1 P 1l D
10! 102 10° 104 10° 1 2 3 v 5
_|_ 10 10 10 _|_ 10 10
Y Yy

Hultmark, Vallikivi, Bailey & Smits (2013)
Vallikivi, Hultmark & Smits (2015)



A universal log law for turbulence?
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Marusic, Monty, Hultmark & Smits (2012)



NSTAP measurements in the Melbourne tunnel

Thick boundary layer, small /T = 2/ny
2.4</(T <35

27m working section

Samie , Marusic, Hutchins, Fan, Fu, Hultmark & Smits (2018)



NSTAP measurements in the Melbourne tunnel

fer = 6123, 10100, 14680, 19680 Thick boundary layer, small £ = £/n,
10 /A Re., _ 2.4 <t <35
8 /
—+
u? 6 :
at
27 ," DNS (Sillero et al. (2013) \‘
'z' Re’T: 2500 ‘\\ 27m working section
0 F” 1 L L hS
10! 107 i 103 10*
Yy

The “inner” peak near y*=15 grows
with Reynolds number

Samie , Marusic, Hutchins, Fan, Fu, Hultmark & Smits (2018)



Growth of the inner peak

Re,; = 6123, 10100, 14680, 19680

A}

/ DNS (Sillero et al. (2013) o
/ Re,=2500 \
\

10! 10 N 10° 10*
Y

11.0

10.5

10.0

8.0

151

7.0

T

DNS: Lee & Moser (2015) \

Samie , Marusic, Hutchins, Fan, Fu, Hultmark & Smits (2018)




Why does the inner peak grow with Reynolds number?

How far can we get analytically?

How about a Taylor series expansion for small yjL

4
(U + u)+ = a1 + b1y+ + 01y+2 + d1y+3 + O<y+ )

- T = [y (g 0)

fuz (=0%) = find using DNS

Smits, Hultmark, Lee, Pirozzoli & Wu (2021)



Channel flow DNS

Re, = 544, 1000, 1995, 5186

Channel (Lee & Moser 2015)
= Rer =544
Rer = 1000
= Rer = 1995
= Rer = 5186

10t 102 103
yt

104

2.5

0.0 +—
10~1

fu2

Channel (Lee & Moser 2015)
Re; =544

Re; = 1000
= Re; =1995
= Re; = 5186

10°

10 103 10*

Data from Lee & Moser (2015)



Channel flow DNS

f-scaling
—
Channel (Lee & Moser 2015) =1 60 —
Re; = 544 f u2+
~— Rer = 1000 _ w2l =il —
8 1 —— Rer =195 50 " bito
N —— Re; = 5186 u2+ 40 -
fu2 30 A
4 -
20 A
2 7 10 -
100 10! 102 103 10% 100 10! 102 103 104
yr yr

Data collapse for 0<y*<20, iﬁcluding peak

w2l = 46f,2

(see also Chen & Sreenivasan 2021)



Experiments at high Reynolds number

Melbourne boundary layer experiment (Samie et al. 2018)

—— Re; =6123 —— Re;=10100 —— Re,=14680 —— Re; = 19680
50
10+ Experimental data
/ 40 -
81 ; f-scaling M
ii u2 30 -
6 :' fuz
4l ; 20 1
2t 10 -
0—’ il el S = 0 LERL R LA | U R S AR ) LI B R A | L A S SUR| R 0.0 IR A
10! 102 103 10* 100 10! 102 103 104 10°
yt yt

Data collapse for 0<y*<50



0.24

0.22 A1

0.20

0.18

0.16

0.14

0.12

What does it mean?

Scale decomposition

i fu2
fuz,a+1<1000
i Large scale
contribution
) Small scale
i contribution
102 108 10*
Re™

o= out? ! 2
T \oyt ). T 12

w w

Wall stress scaling

Modulation and superimposition
of the near-wall motions by large
outer scale motions

Determines scaling for entire near-
wall region

Marusic et al. (2010)

Orlii & Schlatter (2011)

Mathis et al. (2013)

Agostini & Leschziner (2016, 2018)
Yang & Lozano-Durdan (2013)
Lee & Moser (2019)



What does it mean?

Scale decomposition

—J—

2+
Up
u2 ™
P |A+|<1000

Large scale
contribution

Small scale
contribution

102

103
Re™

104

fra— out? ! 2
T \oyt ). T 12

w w

Wall stress scaling

Modulation and superimposition
of the near-wall motions by large
outer scale motions

Determines scaling for entire near-
wall region

Marusic et al. (2010)

Orlii & Schlatter (2011)

Mathis et al. (2013)

Agostini & Leschziner (2016, 2018)
Yang & Lozano-Durdan (2013)
Lee & Moser (2019)



Summary

* Pipe, channel and boundary layer flows obey similar scaling
* Some differences exist, primarily in the nature of the outer-layer eddy structure

Mean flow Turbulence

* Inner and outer scaling *  Quter scaling works well

* Log-law widely accepted but only * Inoverlap region, log-law in u? and w?*
appears at high Reynolds number but v2 and —uv are constant

* Power law blends viscous sublayer to * Near wall intensity in u? grows with
log law Reynolds number due to modulation

* Quter layer has two velocity scales at and superimposition of the near-wall
low Reynolds number, u, and uy motions by large outer scale motions

*  Wall stress determines scaling for entire
near-wall region

* Quter peakin u? appears at high
Reynolds number



Summary

Reynolds number scaling

* Need Re, > 10,000 to understand high Reynolds number
behavior

* Experiments were the only way to get high Reynolds
numbers, but DNS is coming along (quickly)



Summary

Reynolds number scaling DNS of channel flow
100,000
* Need Re* > 10,000 to understand high Reynolds number
behavior
* Experiments were the only way to get high Reynolds
. . . 10,000
numbers, but DNS is coming along (quickly)
Re..
)
1,000 { J
Effort ~ O(Re 3) for IHT
Coleman & Sandberg (2010) 100

1980 1990 2000 2010 2020 2030
year



Computing turbulent wall-bounded flows

Direct Numerical Simulations
(DNS)

e 3D, time-resolved

* No model: captures all scales

* Accuracy limited only by numerical
scheme, grid size/spacing, domain size

* Expensive, slow
e Cost>O(Re?)

e Research tool

¢ 4800

&/~ 4600

Wu & Moin (2009)

Large Eddy Simulations (LES)
e 3D, time-resolved
* Model sub-grid scales

* Accuracy limited by model, grid
size/spacing, domain size, wall
treatment

*  Medium expensive, medium fast
* Cost (wall-modeled) ~O(Re)

* Research tool transitioning to a design

tool (Goc et al. 2021)

1
0 1015 2.5¢10°
- .

Goc et al. (2021)

Reynolds-Averaged Navier-
Stokes (RANS)

* 3D, steady or quasi-steady
* Model all turbulent scales (Boussinesq)

* Accuracy limited by model, numerical
scheme, grid size/spacing, wall-
functions, etc. (ERCOFTAC)

Cheap, fast

Design tool for industry

12
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
—0.4

12
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DNS

RANS



Direct Numerical Simulations

DNS of boundary layer flow

Very useful for examining near-wall 2.1 x 108 points, Re, max 460

behavior, although DNS Reynolds
numbers) the outer layer influence is
muted

Captures scaling of spanwise and wall-
normal stresses)

In-depth spectral analysis (e.g., 2D
spectra, true wavenumber spectra)

4800

Great for testing spatial and temporal 15
content e L 00
Not very useful for examining high Wu & Moin (2009)
Reynolds number behavior (e.g., log law
constants, log-law in streamwise stress,
inner peak, outer peak)

Need Re, > 10,000 to understand high
Reynolds number behavior

Effort ~ O(Re.?) for IHT




Re, = 170, 300, 650 (Spalart 1988)

First DNS of a wall-boundary flow

Time evolution of channel flow with
periodic boundary conditions

Robinson (1991) Re, = 300 case

Vortical Structures, Ejections, and Sweeps

3.2t0 9.4 x 10° points




Re, = 2000 (Hoyas & Jiménez 2011)

Outer region u' (+ve and -ve)

T

1.8 x 109 points



Direct Numerical Simulations

Channel flow (Re, = 10,000) DNS of channel flow

100,000
Domain 8wth x 2h x 31th
Pipe flow (Re, = 6000)
Domain 10-15ntR 10,000
Boundary layer (Re, = 2000) Re., .
Transition
1,000 ®
Typical resolution near the wall Ax* =10,
Ay*=0.2, Az* =5
100
1980 1990 2000 2010 2020 2030

year

Need Re, > 10,000 to understand high Reynolds number behavior



Large Eddy Simulations

Example: channel flow Need to choose a filter function with length scale A
Domain 4mh x 2h x 21th Many choices: box, spectral, Gaussian, etc.
Wall-resolved (WRLES): Need to choose a sub-grid scale model

Turbulence resolved all the way to the Example, dynamic Smagorinsky

wall, with typical resolution near the wall

Ax* =15, Ay* =??, Az* =20 @

Computational cost ?7? Large eddies Small@éddies

Wall-modeled (WMLES):

(simulated; (“modeled” with

B calculated, : subgrid scale)
Turbulence not resolved for y/é < 0.1-0.2 resolved) +
For y/6 < 0.1-0.2, use a wall-stress model,
or a RANS model E(x) \
ABL solvers typically impose a log-law for i1

the mean flow, since the first grid point is Energy- Ihertial o7, .

typically already in the log region containing  isub-i \ (dissipation)
range range: range

Computational cost ??

i Integral eddies Taylor 1 Kolmogorov
7 eddies ; eddies

Rodriguez (2019)



Large Eddy Simulation milestones/people

Smagorinsky (1963) atmospheric flows
Deardorff (1970) channel flow
Schumann (1975)

Leonard (1975)

Kim & Moin (1979)

Piomelli (1989) — wall modeling osephSmagorinsky
Spalart et al. (1997) — detached eddy simulation

Ulrich Schumann

-

Anthony Leonard John Kim Parviz Moin Ugo Piomelli Philippe Spalart



Large Eddy Simulations

Consider the unsteady, incompressible momentum equation for turbulent flow

ou; n dujuj _1 Op . 0%,
ot ox;  p Oz Ox;0z;

. . —_— /
Decompose velocity in large-scale component + small-scale component:  u; = U; + u;

Need to define a filter function (can be different in all three directions). The filter width A is typically 2x

the grid spacing. Filtered equation:_ o _ 5
& P & 9 ﬁuz 8uin 1 8]) 19 8513 87'@']'
= —-——— V J—
ot Oz p 0x; Ox;  Ox;
Leonard (1975): Tij = Lij + Cij + Ryj
Lij = UjlUj — UiU; Leonard stresses (interactions among large scales)
Cij = ﬂzu; —+ ﬂjug Backscatter stresses (interactions between large and small scales)
Rij = u;u; Reynolds stress-like term (interactions among sub-filter scales)

T; heeds to be modeled

Piomelli (1987)



Smagorinsky sub-grid scale model

. . . O = 1 8’(11 a’a
Basically, an eddy viscosity approach: Tij = —VTSZ‘j Sij = 3 <8mj + 83:?)
Production = —u;u; Sij = 2VT gijgij
Small-scale = 62(u;u;)1/2 (production = dissipation)

Dissipation = ¢; (uiul)>/2 /¢

Here, ¢ is alength scale representative of a SGS eddy, so £ o< A

Hence, vp = C/AQ\/2§Z']'§7LJ‘ = CAQ\SE;A Smagorinsky-Lilly SGS model
13, 43\ 1/2 1/3
Piomelli: lprym = Cg [1 — exp (—y /A )} (A1A2A3)

which ensures the proper behavior for the SGS Reynolds stress 75 near the wall (712 ~ y+3)

Piomelli (1987)



Comparing turbulence models

DNS: “exact” solution

Reynolds number

LES: solution without
small eddies

RANS: solution without
any eddies (mean flow
only)

At present, RANS is the best we can do for industrial flows
Rodriguez (2019)



Comparing turbulence models

DDS

Reynolds number

URANS: solution without
small eddies

RANS: solution without
any eddies (mean flow
only)

At present, RANS is the best we can do for industrial flows
CFD Support



Reynolds-Averaged Navier-Stokes

RANS models use Reynolds decomposition to derive equations for the mean momentum
and the time-averaged turbulent stresses u?, v2, w?, —uwv, ...

Essentially a steady flow model (although unsteady versions exist (URANS)

Many different versions are in use

All versions use the Boussinesq approximation where higher order quantities are modeled
as gradients of lower order quantities (eddy viscosity models)

All use the isotropic estimate for the dissipation

Two equation models Reynolds stress models

* One equation for turbulence * One equation for each turbulent stress

+ e.g., TKE (k-g), vorticity (k, ®) component (up to 6 equations)

* One equation for length scale * One equation for length scale

* Dissipation length scale L,

* Dissipation length scale L,

See also https.//www.youtube.com/watch ?v=zIQpxmLwbXQ&ab _channel=SteveBrunton



U

That is

oUu

RANS: mean momentum equations

oUu

ou

U4 V"t W—

ox

oy

ov oV ov
U% + Va—y + WE
ow ow ow
ox v oy +WE N
oU;
U, _
! Oz

0z

1 0 1 [ 0U;
! _pa,ms,.. o _ L o
,0833]( J J SZJ > 8373 +

For steady (or quasi-steady) flow, Reynolds decomposition gives the following mean momentum equations

ou? Ouw  Ouw )

( Ox oy 0z > A
ow v  Ovw 0
Ox + oy 0z ) VIV
omw  Ovw  Ow? )
ox * oy 0z ) VW

OU;
8331'

7;; needs to be modeled



Boundary layer equations

For steady flow, the 2D incompressible

turbulent boundary layer equation is Total stress T

given by: [ ) 1
oU oU 1 dpy, 0 oU
UO—~+V—=—-——"—+ — | —uwv+rv—

ox oy p dr Oy ( 0y )

\ Reynolds shear stress

(needs to be modeled)

g

7, | dobad Stress
. ZT" aU , ) )
! — —UT = Vp— Prandtl’s eddy viscosity
Jorbolest Shesr -~ uv'’ ay
i TrT (‘3U

) 2 _— 7 _ )&
u‘}o J fﬁz::/a)? p, ( ) 8y
— —— #‘*
5 100 In the log region HLAPN /ﬁ;y"'
1%
Near-wall region for zero pressure gradient flow




RANS: turbulent stress equations

* For steady (or quasi-steady) flow, Reynolds decomposition gives the following turbulent stress equation:

2

p—+tu2u—<u2—+uv—+uw— 5 + 9y + o

D (4) __10/u 1o U oUu | oUu\ 1 (o  outv  ouPw
Dt p Ox p- Ox ox dy 0z

Dissipation Transport term
Pressure diffusion Production (sums to zero across the
(net loss of turbulent (energy extracted from shear layer)

Tendency to isotropy
(transfer of turbulent
energy to other
components)

the mean flow by the
turbulence)

energy by work done in
transporting fluid
through regions of
changing pressure
gradient)

Similar equations can be derived for the other stress components




Turbulence Kinetic Energy (TKE) equations

« Summing the normal stress equations gives the TKE or k-equation: &k = %q_z = %uzuz = %(? + 02 + W)

() T U, P
Mean advection — Pty + w2 ) —wm— + vu, !
Dt dx; \ p 27 7 0w, Ox?
Pressure diffusion
(net loss of turbulent energy by work Dissipation
done in transporting fluid through (closely equal to the
regions of changing pressure gradient) Production dissipation of mean flow

(energy extracted from  kinetic energy into heat)
the mean flow by the
turbulence)

Turbulent advection
(rate of transport of TKE
by the turbulence)

All terms on the RHS need to be modeled in terms of U; and %q_2




The Boussinesq approximation

Boussinesq's hypothesis is that the turbulent stresses are related to the mean velocity gradients in a way
that is similar to the way viscous stresses are related to the complete velocity gradients.

| ible f | Ui _ L9 (s, +ous,, — parm) S o (L
ncompressible rtorm only ]8333 pascj POij Hoi5 — PUiU; ij 9 8% 9z,
Definition of eddy viscosity wu; = 2048 — %kéij - %uzuz — %(F 4+ 2+ W)
2D example: TV = Vta_U Prandtl’s eddy viscosity
Ay
Definition of length scale vy = vkl

2D example: —UU = €2 ‘

. 8y (assuming wv P) Prandtl’s mixing length

The underlying assumption is that V¢ or £ behave more simply than (I




Mixing length and the log law

* Boussinesq's hypothesis is that the turbulent stresses are related to the mean velocity gradients in a way
that is similar to the way viscous stresses are related to the complete velocity gradients.

Definition of length scale v, = Vkt
2D example: —uv = Efn 3y ‘ (assuming uv @) Prandtl’s mixing length
Constant stress region: U0 = ul = E%,L 3y ‘
! oU
ence: —_— = —
oy Em
by = KY
8U U+ Ludwig Prandtl
Log law: —_— = —



Example: k-€¢ method

* Use the Boussinesq approximation to model the TKE equation in terms of g:

173 - .
D (§q2> 0 (p'u; R e oU; - 0%u;
— L = su Ui, VU ——
Dt dxj \ p 197 O ox3
For high Reynolds numb Dk _ 0 (m O\, (90U 0U;) 0Ui
or high Reynolds numbers 5y = 5 \op oz, ) "\ oz, " 0z ) 0z,
De 0 (v Oe ou;  oU;\ 9U; g?
Dt Oz <0_€8xj) Clytk (axj i axi) 0x _02?

vy = C’Mk2/e v = Vil

C, =009, Cy=144, Cy =192, o0, =100, o.=1.3

For low Reynolds numbers (near the wall) some modifications are necessary to account for viscous effects

Launder & Spalding (1974)



Example: k-€¢ method

Dk 0 vy Ok oU; U, \ oU; Ok1/?
For low Reynolds numbers = — _—_ — 4] =— )+ 4+ -7 — u — ¢
(near the Wa“) Dt 8.’1}j OL 837]' 8[13j &rz 8.’13j 8.’13j

Introduced for computational reasons

De 0 Vt Oe € 8UZ (9Uj 8UZ 82 82Uz ?
—=—|| = +4— — —Co— — 2.
: (( i V> ‘ ) i Clyt/c (8xj i &Ui) Ox C: k Ovei (83:7;83:;

Introduced to make constrain k near the wall

Cy = Cucexp[—2.5/ (14 R;/50)], C1 =144, C3=Cs[1.0—03exp(—R})], or=1.00, o.=13

(Ry = k? Jve ~ 14 /V)

Launder & Spalding (1974)



Dissipation modeling

RANS models the dissipation using the isotropic results as a basis:

2
Vy = C,k%/e k‘3/2
RANS: b/ e=C,——
Vg = \/Ef 14
The Richardson energy cascade: “Big whirls have little whirls that feed on their velocity, Lewis Fry Richardson

and little whirls have lesser whirls and so on to viscosity.”

For high Reynolds numbers (large scale separation): £ = —

A

where g and A are the velocity and length scales characteristic of the energy containing motions

Need the energy containing motions to be independent of the boundary conditions
The flow must be in a state where the inertial region is fully established

The g-equation is actually a length scale equation

Andrey Kolmogorov George Batchelor



Energy budget for k, Re, = 5200

dU  dkv  d%k 2 dp'v
0=—2uv— — 0+ =
Yy T ay +de2+ +p dy

0 = production + turbulent transport + viscous transport + pressure strain + pressure transport + dissipation

0.40

0.30 -

0.20 1 Production

0.10 - Turb Transport

0.00 7% Visc Transport
/ Press transport

-0.10 A

Visc dissipation

-0.20 A

-0.30 A

-0.40

1 10 100
Yy Data from Lee & Moser (2015)



Energy budget for k, Re, = 5200

dU  dkv  d%k 2 dp'v
0=—2uv— — 0+ =
Yy T ay +de2+ +p dy

0 = production + turbulent transport + viscous transport + pressure strain + pressure transport + dissipation

0.10

0.08 -

0.06 | Production = Dissipation
Production

0.04 -
Turb

0.02 Transport
Visc

0.00 >~ ~—— Transport
Press

-0.02 - transport
Visc

20.04 \ dissipation

-0.06 -

-0.08 -

-0.10 .

10 100 1,000

Yy Data from Lee & Moser (2015)



0.2

Turbulence kinetic energy production

Semi-log

Pre-multiplied

L T T MR | oo rrre 4'0: o RN | MR | B | N | T 1
- a 0.02 T 3.5; b _
i 3.0F .
ol o pzzg T L
10 | % 20F v
S U — Re,=1,000 15} S\ Re,=1,000 ' 1
— Re;=2,000 | Lol : — Re;=2000 | ]
== Re,=106 | ' _ - R€T=106 '
05} : b

M S S A P T B A PR ol e e bl ) 0E ra vl Loa vl L1 :'il Lol 1 ..uu“l

100 10' 102 103 104 10 10'

103 104

y*

102 105 108
dU~*
dyT

P =—-wuv

Smits et al. (2018)



Summary: RANS methods

Fast, stable, widely available commercially

Industry standard design tool
Ansys Fluent, OpenFOAM, SimFlow, Autodesk, FUN3D

Many varieties available, tuned to specific flows (e.g., airfoils)

Spalart-Almares: transport equation for eddy viscosity (one-equation model tuned to airfoil flows)
k-o: transport equations for kand w (ox €/k)-- better near the wall than k — &

Menter Shear Stress Transport (SST): switches from k—w near the wall to k-g away from the wall to
get the best of both worlds

SSG-LRR: full Reynolds stress model using the Launder-Reece-Rodi pressure-strain model near the
wall and the Speziale-Sarkar-Gatski model away from the wall

Etc.

No method is very good at predicting separation on smoothly varying surfaces

If there is defined separation point, then DES methods preferred
ERCOFTAC, NASA, CFD Online, OpenFOAM, etc.
Machine learning

See also https://www.youtube.com/watch?v=AgvjPPzy641&ab_channel=SteveBrunton



RANS has been used on almost every flow imaginable

Sometimes it works, and sometimes it doesn’t

u/Ub

0.8

0.6

0.4

Example: RANS methods

SST
EASM-SSC

Rij SSG-LRR
- o Exp

Rep = 150,000
Re,; = 3400

|

10"
r/'D

Mean velocity in empty pipe

Bow region
Mean velocity
—01<z/R<1.1

Data

SST
—mimimim SSG-LRR

Medium body, bow region

Shear stress

Data
SST
------ SSG-LRR

‘Medium body, bow region

Vissoneau, Deng, Gilmineau, Ding, Smits (2022)



Example: RANS methods

Stern region Wake region

Data
SST
SSG-LRR

Mean velocity
129 <z/R <164

Mean velocity
87<z/R <122

Shear stress Shear stress

Medium body, after body regioh E Medium body, wake region



Summary

It is now obvious that fundamental studies of turbulence must be performed as a partnership
between experiment and DNS

Some questions can still only be answered by experiment
Some gquestions can only be answered by DNS

For canonical flows, DNS will very soon provide the necessary information for future
understanding, instead of experiment



Summary

It is now obvious that fundamental studies of turbulence must be performed as a partnership
between experiment and DNS

Some questions can still only be answered by experiment
Some gquestions can only be answered by DNS

For canonical flows, DNS will very soon provide the necessary information for future
understanding, instead of experiment

Beyond canonical flows:
* Subsonic: pressure gradient, curvature, divergence, sudden perturbations ...

* High Mach number: heat transfer, chemistry, reacting flows



Summary

It is now obvious that fundamental studies of turbulence must be performed as a partnership
between experiment and DNS

Some questions can still only be answered by experiment
Some gquestions can only be answered by DNS

For canonical flows, DNS will very soon provide the necessary information for future
understanding, instead of experiment

Beyond canonical flows:
* Subsonic: pressure gradient, curvature, divergence, sudden perturbations ...

* High Mach number: supersonic and hypersonic flows, shock-wave boundary layer
interactions....



Questions?




