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D. First Addendum to Chapter XI (Addendum B). Lift forces on a 
cylindrical particle in plane Poiseuille flow of Newtonian and shear 
thinning fluids 

Wang and Joseph [2003] have extended the analyses of the slip velocities and the lift 
on particles in plane Poiseuille flow from Newtonian fluids to shear thinning fluids. 
Explicit formulas for the lift force have been derived in terms of the slip velocity and 
angular slip velocity by correlating the data from numerical experiments.  

 The lift force on a particle in a shear flow 
Different analytical expressions for the lift force on a particle in a shear flow can be 

found in the literature. Auton [1987] gave a formula for the lift on a particle in an inviscid 
fluid in which uniform motion is perturbed by a weak shear. Bretherton [1962] found an 
expression for the lift per unit length on a cylinder (two-dimensional sphere) in an 
unbounded linear shear flow at small values of Reynolds number. Saffman [1965, 1968] 
gave an expression for the lift on a sphere in an unbounded linear shear flow. Saffman’s 
equation is in the form of the slip velocity multiplied by a factor, which can be identified 
as a density multiplied by a circulation as in the famous formula ΓUρ  for aerodynamic 
lift. A number of formulas like Saffman’s exist and a review of such formulas can be 
found in McLaughlin [1991]. Formulas like Saffman’s cannot explain the experiments by 
Segrè and Silberberg [1961, 1962]. They studied the migration of dilute suspensions of 
neutrally buoyant spheres in pipe flows and found the particles migrate away from both 
the wall and the centerline and accumulate at a radial position of about 0.6 times the pipe 
radius. There is nothing in formulas like Saffman’s to account for the migration reversal 
near 0.6 of the radius. 

The effect of the curvature of the undisturbed velocity profile was found to be 
important to understand the Segrè and Silberberg effect. Ho and Leal [1974] analyzed the 
motion of a neutrally buoyant particle in both simple shear flows and plane Poiseuille 
flows. They found that for Couette flow, the equilibrium position is the centerline; 
whereas for Poiseuille flow, it is 0.6 of the channel half-width from the centerline, which 
is in good agreement with Segrè and Silberberg.  

Choi and Joseph [2001], Patankar, Huang, Ko and Joseph [2001] and Joseph and 
Ocando [2002] studied particle lift in plane Poiseuille flows by direct numerical 
simulation. They showed that multiple equilibrium states exist for heavy particles in 
plane Poiseuille flows. These equilibrium states can be stable or unstable and the 
distinction leads to division of the channel into alternating stability regions in the 
following order: wall – stable – unstable – stable – unstable – centerline (see Fig. B.3).  

Joseph and Ocando [2002] analyzed the role of the slip velocity and the angular slip 
velocity on migration and lift. They showed that the discrepancy Ωs -Ωse, where Ωse is the 
angular slip velocity at equilibrium position, is the quantity that changes sign across the 
equilibrium position. Thus, this discrepancy can be used to account for the migration 
from both the wall and the centerline to the equilibrium position. 

Power law correlations are frequently observed in studies of solid-liquid flows. A 
famous example is the Richardson-Zaki correlation, which is obtained by processing the 
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data of fluidization experiments. The Richardson-Zaki correlation describes the 
complicated dynamics of fluidization by drag and is widely used for modeling the drag 
force on particles in solid-liquid mixtures. Correlations can also be drawn from numerical 
data; for example, power law correlations for single particle lift and for the bed expansion 
of many particles in slurries were obtained by processing simulation data (Patankar et al. 
[2001]; Choi and Joseph [2001]; Patankar, Ko, Choi, and Joseph [2001]). The prediction 
of power laws from numerical data suggests that the same type correlations could be 
obtained from experimental data as was done by Patankar, Joseph, Wang, Barree, 
Conway and Asadi [2002] and Wang, Joseph, Patankar, Conway and Barree [2003]. The 
existence of such power laws is an expression of self-similarity, which has not yet been 
predicted from analysis or physics. The flow of dispersed matter appears to obey those 
self-similar rules to a large degree (Barenblatt [1996]).  

 Most of studies on migration and lift are for Newtonian fluids. However, in many of 
the applications the fluids used are not Newtonian and shear thinning is the most 
important non-Newtonian property. Papers treating the migration of particles in shear 
flows of shear thinning fluids were done by Huang, Feng, Hu and Joseph [1997], Huang, 
Hu and Joseph [1998] and especially by Huang and Joseph [2000]. All these authors used 
the Carreau-Bird viscosity function (B.1) but only Huang and Joseph [2000] studied the 
case when there is shear thinning but no normal stresses.  

In this addendum, we extend previous studies of lift on a cylindrical particle in plane 
Poiseuille flows of Newtonian fluids to shear thinning fluids. We show that the pattern of 
the stability regions in shear thinning fluids is the same as that in Newtonian fluids. The 
effects of shear thinning on the distribution of the stability regions are discussed. We 
verify that the angular slip velocity discrepancy changes sign across the equilibrium 
position for both neutrally buoyant particles and heavy particles. We derive power law 
correlations for the lift force in terms of the slip velocity and angular slip velocity 
discrepancy and demonstrate that these correlations can be made completely explicit.  

 Governing equations 

The 2D computational domain is shown in Fig. B.1. l and W are the length and width 
of the channel respectively, and d is the diameter of the particle. The simulation is 
performed with a periodic boundary condition in the x-direction. The solutions are 
essentially independent of the channel length l for sufficiently large l. The geometric 
parameters are W/d = 12, l/d = 22. The values of these parameters are taken from 
Patankar at al. [2001] where they justified that the solutions are essentially independent 
of the selected geometric parameters.  

A constant pressure gradient p−  is applied which gives rise to Poiseuille flow and 
the direction of the gravity force is perpendicular to the flow direction. In simulations in 
periodic domains the fluid pressure P is split as follows: 

xexg x ⋅−⋅+= ppP fρ  ⇒   xeg ppP f +−−∇=∇− ρ  
where ex is the unit vector in x-direction, x is the position vector of any point in the 
domain and g is the gravitational acceleration. p is periodic and solved in simulations. 
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Figure B.1: The 2D rectangular computational domain. 

We use the Carreau-Bird model for the shear thinning effects: 
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where γ&  is the shear rate defined in terms of  the second invariant of the rate of strain 
tensor D. The shear thinning index n is in the range of 0 – 1 and 3,0 , ληη ∞  are prescribed 

parameters. We use 0η =1.0 11 −− ⋅⋅ scmg , 0/ηη∞ =0.1 and 3λ =1.0s throughout our 
simulations. 

We consider cylindrical particles of diameter d with the mass per unit length m = 
ρpπd2/4 and the moment of inertia per unit length I = ρpπd4/32. A dimensionless 
description of the governing equations can be constructed by introducing scales: the 
particle size d for length, V for velocity, d/V for time, V/d for angular velocity and 

dV /0η for stress and pressure. We choose 
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which is the average velocity of  the undisturbed Poiseuille flow in Newtonian fluids. V  
can be related to the shear rate at the wall )2/( 0ηγ Wpw =& : 
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for the velocity û  and pressure p̂  of the fluid and 
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for the velocity pÛ  and angular velocity pΩ̂  of the particle whose center of mass has the 

coordinate X̂ . In equations (B.3) – (B.5) we use 
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 The no-slip condition is imposed on the particle boundaries: 
( ).ˆˆˆˆˆ pp XxΩUu −×+=     (B.6) 

Following is a list of the dimensionless parameters: 
fp ρρ / , density ratio; 

d/W,  aspect ratio; 
0/ηη∞ , viscosity ratio; 
2

3
2 )2( wγλ &=Λ , shear rate parameter; 

n,  shear thinning index; 
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W/d and 0/ηη∞  are constant in our simulations; 3λ  is also constant, so 2Λ  would not 
provide more information. Thus fp ρρ / , R, n and RG are the four dimensionless 
parameters at play. The Reynolds number R and shear thinning index n together, 
characterize an undisturbed Poiseuille flow. We define an average Reynolds number R  = 
ρfu0d/η0 where u0 is the average velocity of the undisturbed Poiseuille flow. In table B.1, 
we list the average Reynolds numbers R  for flows characterized by (n, R) pairs. R  
increases significantly with n decreasing at a fixed R. 

n R R  
1.0 20 20.00 
0.9 20 24.28 
0.8 20 30.48 
0.7 20 39.70 
1.0 40 40.00 
0.9 40 51.84 
0.8 40 69.97 
0.7 40 97.89 
1.0 80 80.00 
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0.9 80 110.72 
0.8 80 160.06 
0.7 80 237.60 

Table B.1: Average Reynolds numbers R  for flows characterized by (n, R) pairs. 

 Undisturbed flow 

We refer Poiseuille flow without particles as undisturbed flow. The dimensionless 
momentum equation in the x-direction for the undisturbed flow is  
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An analytical solution for the Poiseuille flow of a Carreau-Bird fluid is not known. 
However, a numerical solution can be achieved by an iterative method. First )ˆ(ˆ 0 yγ&  is 
assumed to be the shear rate of the Poiseuille flow of a Newtonian fluid and ))ˆ(ˆ( 0 yγ&Θ  is 
obtained. A new shear rate profile )ˆ(ˆ1 yγ&  is then computed and the steps are repeated until 

)ˆ(ˆ yγ&  converges. The velocity )ˆ(ˆ yu  is obtained by integrating the shear rate. 

 
(a)      (b) 

Figure B.2. The dimensionless velocity u/V= )2/( du wγ&  profiles (a) and the dimensionless 
viscosity 0/ηη  profiles (b) of the Poiseuille flows with R = 40 and n = 0.7, 0.8, 0.9 and 
1.0 (Newtonian fluid). Due to the symmetry of the profiles, only a half of the channel is 
plotted. 

The velocity and viscosity profiles of the Poiseuille flows with R = 40 and n=0.7, 0.8, 
0.9, and 1.0 (Newtonian fluid) are plotted in Fig. B.2. The velocity profiles are 
qualitatively similar to the parabolic profiles seen in flows of Newtonian fluids. At a 
fixed R, the maximum velocity in the channel increases significantly as n decreases. The 
viscosity profiles have their minimums at the wall (corresponding to the maximum γ& ), 
and their maximums at the centerline (corresponding to zero γ& ). 

 Stable and unstable equilibrium regions 

An equilibrium is achieved for a freely moving and rotating cylindrical particle with a 
given density in a Poiseuille flow when the particle migrates to a position ye of steady 
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rectilinear motion in which the acceleration and angular acceleration vanish and the 
hydrodynamic lift just balances the buoyant weight. Two types of simulations are 
performed, unconstrained simulation and constrained simulation. In unconstrained 
simulations, a particle is allowed to move and rotate freely to migrate to its equilibrium 
position. The initial translational and angular velocities of the particle are prescribed and 
initial-value problems are solved to obtain the equilibrium state. In constrained 
simulations, the position of the particle in the y-direction yp is fixed and the particle is 
allowed to move in x-direction and rotate. The solution of the flow evolves dynamically 
to a steady state at which the lift force per unit length L on the particle is computed. Such 
a steady state will be an equilibrium at y=yp if the density of the particle is selected so that 
L just balances the buoyant weight per unit length, satisfying: 
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where L̂  is a dimensionless lift force and represents the ratio between the hydrodynamic 
lift force L and the buoyant force ρfgπd2/4. 

From the steady state values which evolve in constrained simulations, we are able to 
obtain L̂  on the particle at any position y/d in the channel. We can divide the curve of L̂  
vs. y/d from the wall to the centerline into four branches by three “turning points” (see 
Fig. B.3). The “turning point” is defined as the position where the slope of the L̂  vs. y/d 
curve is zero. On the first and third branches of steady solutions, the slope of L̂  vs. y/d 
curve is negative, and the equilibrium points on these branches are stable. On the second 
and fourth branches of steady solutions, the slope of L̂  vs. y/d curve is positive, and the 
equilibrium points are unstable. We will indicate the unstable branches by dotted lines in 
the figures. 
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Figure B.3. A plot of L̂  vs. y/d for a flow with n=0.8 and R = 20 from constrained 
simulations. The stable and unstable branches and three turning points are illustrated. 
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Unstable branches are indicated by dotted lines. Two stable equilibrium points for a 
particle with pρ / fρ  = 1.01 are shown. 

 From the L̂  vs. y/d curve, the equilibrium position for a particle with a certain pρ  
can be determined. The lift force required to balance the buoyant weight of a particle can 
be computed from (B.8). If we draw a line on which L̂  equals to this required lift force, 
the points of intersections between this line and the L̂  vs. y/d curve are the equilibrium 
points for this particle. For heavier-than-fluid particles with intermediate densities, there 
exist multiple stable equilibrium positions from the wall to the centerline (see Fig. B.3 
where two stable equilibrium points for a particle with pρ / fρ  = 1.01 are shown). 

However, for a neutrally buoyant particle ( L̂  = 0), only one stable equilibrium point 
exists from the wall to the centerline. 

Ho and Leal [1974] studied the equilibrium position of a neutrally buoyant freely 
moving and rotating sphere between plane bounding walls. They assumed that the walls 
were so closely spaced that the lift could be obtained by perturbing Stokes flow with 
inertia. They calculated dimensionless lateral force vs. lateral position curves  (equivalent 
to our L̂  vs. y/d curve) for simple shear flow and 2D Poiseuille flow which are shown in 
Fig. B.4. Comparing the dashed line in Fig. B.4 which is for 2D Poiseuille flow and the 
L̂  vs. y/d curve in Fig. B.3, one can see that both of the two plots imply the centerline is 
an unstable equilibrium position. However, the dashed line in Fig. B.4 indicates that there 
are two branches from the wall to the centerline: wall – stable – unstable – centerline, 
whereas four branches exist according to Fig. B.3. Ho and Leal only considered neutrally 
buoyant particle and did not include the gravity term in the governing equation used in 
their calculation. The frame of their work did not enable them to study the multi-
equilibrium positions of heavier-than-fluid particles. The results shown in Figs. B.3 and 
B.4 are not strictly comparable; Ho and Leal studied spheres (3D) between plane walls at 
indefinitely small R whereas our calculation is for 2D particles at much higher Reynolds 
numbers. 

 



Interrogations of DNS of Solid-Liquid flows  Addendum to Chapter XI 

1/21/05 D-8 

Figure B.4. Lateral force as a function of lateral position, both in dimensionless form. —-
, simple shear flow; - - -, 2D Poiseuille flow. (Adapted from Ho and Leal 1974)  

The distribution of the equilibrium branches is affected by the shear thinning effects. 
The L̂  vs. y/d curves are computed for the flows with R = 20, 40 and 80 and n=0.7, 0.8, 
0.9 and 1.0 (Newtonian fluid). Two groups of typical curves are plotted in Figs. B.5 and 
B.6. 

We find that when the shear thinning effects become stronger, the stable branch near 
the wall decreases in size; the unstable branch near the wall moves closer to the wall; the 
stable branch near the centerline increases in size; the unstable branch at the centerline 
decreases in size. The shrinkage of the unstable branch at the centerline implies that a 
particle could be lifted to a equilibrium position closer to the centerline if shear thinning 
effects are stronger. A closer equilibrium position to the centerline could also be achieved 
when pressure gradient is higher, as shown first in Patankar et al. [2001] and confirmed in 
our simulations. It seems that higher pressure gradient and stronger shear thinning both 
lead to stronger inertia effects and could lift a particle closer to the centerline. In the 
range of the Reynolds number and shear thinning index we simulated, the unstable 
branch at the centerline never vanishes. Patankar et al. [2001] reported that in 2D 
Poiseuille flows of an Oldroyd-B fluid at high Deborah number, the centerline can be a 
stable equilibrium position and the Segrè and Silberberg effect does not occur. We did 
not observe the same phenomenon in shear thinning fluids. 

0

0.005

0.01

0.015

0.02

0.025

0.5 1 1.5 2 2.5 3y/d

L

n=0.7
n=0.8
n=0.9
n=1.0

 

Figure B.5. Near-the-wall part of L̂  vs. y/d curves of the Poiseuille flows with R = 20 
and n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid). The unstable branches are indicated by 
dotted lines and their starting and ending points are marked by pairs of short vertical 
lines. With the shear index n decreasing, the stable branch near the wall decreases in size 
and the unstable branch near the wall moves closer to the wall.  
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Figure B.6. Near-the-centerline part of L̂  vs. y/d curves of the Poiseuille flows with R = 
80 and n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid). The unstable branches are indicated by 
dotted lines and short vertical lines are used to mark the starting points of these unstable 
branches. With the shear index n decreasing, the unstable branch near the centerline 
decreases in size.  

 Angular slip velocity discrepancy and net lift force 

 Joseph and Ocando [2002] studied slip velocities and particle lift in 2D Poiseuille 
flows of Newtonian fluids. The slip velocity is Us=Uf-Up and the angular slip velocity is 

fps ΩΩΩ −= , where Uf and Ωf = 2/γ− &  are the translational velocity and angular 
velocity of the undisturbed Poiseuille flow at the position of the particle and γ&  is the 
local shear rate. The net lift force is: 

Ln = 4/)( 2 gdL fp πρρ −−  ⇒  )1(ˆˆ −−=
f

p
n LL

ρ
ρ

.   (B.9) 

Joseph and Ocando found that the angular slip velocity discrepancy Ωs -Ωse, where Ωse is 
the angular slip velocity at equilibrium, changes sign across the equilibrium position. 
Furthermore, they showed that across a stable equilibrium position, the net lift force Ln 
has the same sign as the discrepancy Ωs -Ωse; whereas across an unstable equilibrium 
position, the net lift force Ln has the opposite sign as the discrepancy Ωs -Ωse.  In this 
section, we verify that these conclusions hold in shear thinning fluids using constrained 
simulations.  

We fix a particle at positions slightly above (yp > ye) and below (yp < ye) its 
equilibrium positions and compute the steady state lift force and angular slip velocity Ωs. 
For a neutrally buoyant particle, both stable and unstable equilibrium positions are 
investigated; for a heavy particle, both of its two stable equilibrium positions are 
investigated.  Table B.2 shows the results for a neutrally buoyant particle and table B.3 
shows those for a heavy particle.  
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ye/d 4.35 6.0 
Ωse/( )2 wγ&  1.25×10-2 0.0 
fixed yp/d 4.33 4.36 5.95 6.05 

L/(ρfgπd2/4) 8.2×10-5 -1.4×10-5 -7.9×10-5 7.7×10-5 
(Ωs -Ωse)/( )2 wγ&  2.5×10-6 -4.5×10-4 5.8×10-5 -5.3×10-5 

 Table B.2. The steady state values of L and Ωs -Ωse in dimensionless form at fixed 
positions slightly above (yp > ye) and below (yp < ye) the equilibrium positions of a 
neutrally buoyant particle in the flow with n=0.7 and R=20. The stable equilibrium 
position is ye/d=4.35 with Ωse/( )2 wγ& =1.25×10-2. For the particle fixed below (yp/d = 
4.33), Ωs -Ωse>0 and L>0; for the particle fixed above (yp/d= 4.36), Ωs -Ωse<0 and L<0. 
The unstable equilibrium position is the centerline with ye/d=6.0 and Ωse/( )2 wγ& =0. For 
the particle fixed below (yp/d = 5.95), Ωs -Ωse>0 but L<0; for the particle fixed above 
(yp/d=6.05), Ωs -Ωse<0 but L>0. 

ye/d 0.918 2.26 
Ωse/( )2 wγ&  7.16×10-2 4.95×10-2 
fixed yp/d 0.9 1.0 2.25 2.5 

Ln/(ρfgπd2/4) 1.88×10-3 -6.4×10-3 2.58×10-4 -3.26×10-3 
(Ωs -Ωse)/( )2 wγ&  4.88×10-4 -1.44×10-3 1.50×10-5 -5.50×10-3 

 Table B.3. The steady state values of the net lift force Ln and Ωs -Ωse in dimensionless 
form at fixed positions above (yp > ye) and below (yp < ye) the equilibrium positions of a 
heavy particle (ρp/ρf=1.024) in the flow with n=0.9 and R=40. Two stable equilibrium 
positions exist: ye/d=0.918 with Ωse/( )2 wγ& =7.16×10-2 and ye/d=2.26 with Ωse/( )2 wγ&  
=4.95×10-2. For either one of the equilibrium positions, Ωs -Ωse>0 and Ln>0 when the 
particle is fixed below; Ωs -Ωse<0 and Ln<0 when the particle is fixed above.  

Table B.2 and B.3 verify the conclusions about the discrepancy Ωs -Ωse, summarized 
as following: Ωs -Ωse<0 when yp > ye ; Ωs -Ωse>0 when yp < ye. With a stable equilibrium 
as the reference state, negative Ωs -Ωse leads to negative Ln, positive Ωs -Ωse leads to 
positive Ln; with an unstable equilibrium position as the reference state, negative Ωs -Ωse 
leads to positive Ln, positive Ωs -Ωse leads to negative Ln. (Ln=L in the case of a neutrally 
buoyant particle.) These conclusions are for the lift force and slip velocity in steady flows 
and do not hold generally for a free particle with accelerations.  

 Lift correlations  
Motivated by the conclusion that Ωs -Ωse has the same sign as Ln across a stable 

equilibrium position, we seek the correlations between Ln and the product Us(Ωs -Ωse). 
Such correlations may be constructed by analogy with the classical lift formula L= ΓCU  
of aerodynamics. The proper analogs of U and Γ in the present context are Us and Ωs -Ωse 
as first propsed in Joseph and Ocando [2002]. We proceed as follows to obtain the 
correlations. First we compute L, Us and Ωs as functions of y by constrained simulations 
in a steady flow with Reynolds number R and shear thinning index n. Then we correlate 
dimensionless parameters based on L and Us(Ωs -Ωse) to power law formulas. These steps 
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are repeated for different flows identified by (R, n) pairs and lead to correlations for each 
flow. The coefficients in such correlations are functions of R and n which can be obtained 
by data fitting analyses. Finally we obtain correlations between dimensionless L and 
Us(Ωs -Ωse) with coefficients expressed as functions of R and n.   

Figure B.7 shows the relative values of L, Us and Ωs in the steady flow with R= 20 
and n=0.9. 
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Figure B.7. The relative values of L, Us and Ωs in the steady flow with R=20 and n=0.9.  

Local dimensionless parameters are used to express the correlations. The local 
dimensionless net force is: 
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Two local Reynolds numbers are based on Us and Ωs -Ωse respectively: 
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The product of UR  and ΩR is defined as F: 
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To compute F(y) from (B.12), it is necessary to specify the equilibrium angular slip 
velocity Ωse=Ωs(ye) where ye is the position at which the lift equals the buoyant weight. 
The L̂  vs. y/d curve (Fig. B.3) shows that each and every value of y/d on the stable 
branches is a possible equilibrium position (y=ye) for some particle ρp. You may cover 
the range of possible ye by varying the weight of the particle. Once ye is selected, Ωse is 
given as Ωs(ye). The dependence of Ωse and Ln on ρp makes the correlations between λ(y) 
and F(y) particle-density dependent. However, the steady state values of L do not depend 
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on particle density. If we derive the correlations between λ(y) and F(y) for one ρp, the lift 
force is essentially obtained and can be applied to particles with different densities. We 
present the correlations with the single equilibrium position of a neutrally buoyant 
particle as the reference. There are two advantages of this choice: the complexity of 
multi-equilibrium positions of a heavy particle is avoided; the correlations are in simple 
forms which are a power law for the stable branch near the wall and a linear relation for 
the stable branch near the centerline. 

For a neutrally buoyant particle, a single equilibrium position exists at N
eyy =  (the 

superscript is for “neutral”) with 0)( =N
eyL  and N

se
N
es y Ω=Ω )( . Thus the dimensionless 

parameters have the following form: 
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ydL
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The correlations are in the following form, 
),()/,,(),()/,,( nRmdynRFnRadynR =λ     on the stable branch near the wall; (B.13) 

)/,,(),()/,,( dynRFnRkdynR =λ     on the stable branch near the centerline. (B.14) 
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Figure B.8. The power law correlations between λ(y) and F(y) on the stable branch near 
the wall for the flows with R=20 and n=0.7, 0.8, 0.9 and 1 (Newtonian fluid). 
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We obtain the correlations for flows with n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid). 
In Fig. B.8, the correlations on the stable branch near the wall are plotted for the flows 
with R=20. The power law correlations along with the correlation coefficients σ2 are 
shown in the figure. In Fig. B.9, two examples of the linear correlation between λ(y) and 
F(y) on the stable branch near the centerline are plotted for the flows with (R=20, n=0.7) 
and (R=80, n=0.8). It can be seen that our correlations describe the data faithfully. 
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Figure B.9. The linear correlation between λ(y) and F(y) on the stable branch near the 
centerline for the flows with (R=20, n=0.7) and (R=80, n=0.8). 

The prefactor a, the exponent m and the slope k in (B.13) and (B.14) are functions of 
R and n. In table B.4, the coefficients a, k and m are listed along with R, n, and the 
average Reynolds number R which can be viewed roughly as a parameter for the 
combined effects of R and n. Coefficients a, m and k are also plotted against R  in Figs. 
B.10-B.12. 

n R R  a m k 
1 20 20 17.937 0.4003 53.171

0.9 20 24.28 21.589 0.4004 34.685
0.8 20 30.48 28.049 0.423 27.348
0.7 20 39.7 37.322 0.439 19.458
1 40 40.0 27.288 0.410 30.739

0.9 40 51.84 36.38 0.427 25.591
0.8 40 69.97 40.808 0.481 22.166
0.7 40 97.89 9.664 0.774 11.759
1 80 80.0 38.009 0.448 24.35 

0.9 80 110.72 53.729 0.450 21.066
0.8 80 160.06 9.570 0.779 8.879 
0.7 80 237.6 2.710 0.898 7.698 
1 120 120 43.83 0.472 21.54 
1 160 160 41.48 0.496 16.39 
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Table B.4. The prefactor a, the exponent m and the slope k as functions of the shear index 
n and the Reynolds number R. 
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Figure B.10. The prefactor a vs. the average Reynolds number R . 
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Figure B.11. The exponent m vs. the average Reynolds number R . 
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Figure B.12. The slope k vs. the average Reynolds number R . 

Figures B.10 and B.11 reveal that the power law correlation (B.13) on the stable 
branch near the wall has two regimes. Flows of Newtonian fluids and weak shear 
thinning flows fall into regime1 where the prefactor a increases with R  increasing and 
the exponent m is in the range of 0.4 – 0.5. Regime2 has three flows (n=0.7, R=40), 
(n=0.7, R=80) and (n=0.8, R=80) and can be identified as a strong shear thinning regime 
where the prefactor a decreases with R  increasing and the exponent m is in the range of 
0.77 – 0.9. From the values of the exponent m, we can tell that in regime2 the dependence 
of the lift force on the product of slip velocities is stronger than that in regime1. It is 
noted that the two flows (n=1.0, R=160) and (n=0.8, R=80) have very close values of R  
but substantially different coefficients a, m and k (see table B.4); this indicates that 
particle lift in strong shear thinning flows is different with that in flows of Newtonian 
fluids at high Reynolds number. Figure B.12 exhibits one regime of the linear correlation 
(B.14) where the slope k decreases with R  increasing. Figures B.10-B.12 also suggest 
that power law or linear functions of R  could be used to approximate the prefactor a and 
the exponent m in regime1 and the slope k. However, the error of such approximations 
would be considerable. The reason of such error is that a, k, and m depend on both n and 
R; one single parameter R  cannot fully describe the dependence of the coefficients on 
the flow. 

We cannot fully determine the coefficients a, m and k as functions of R and n because 
of insufficient data. If we focus on flows of Newtonian fluids (n=1), R is the only active 
parameter and we expect to get satisfactory a(R), k(R) and m(R) approximations by data 
fitting analyses. The coefficients a, k, and m in flows of Newtonian fluids are listed as 
functions of R in table B.5. 

R a m k 
20 17.94 0.400 53.17
40 27.29 0.410 30.74
80 38.01 0.448 24.35
120 43.83 0.472 21.54
160 41.48 0.496 16.39

Table B.5.The prefactor a, the exponent m and the slope k as functions of the Reynolds 
number R for flows of Newtonian fluids. Data are consistent with those in table B.4. 

Data fitting analyses yield: 
428.034.5 Ra = ,  σ2=0.94;     (B.15) 

386.00007.0 += Rm ,  σ2=0.99;    (B.16) 
515.05.232 −= Rk ,  σ2=0.96.    (B.17) 

Inserting (B.15), (B.16) and (B.17) into the correlations (B.13) and (B.14), we obtain 
correlations which apply to flows of Newtonian fluids with a Reynolds number in the 
range of 20 – 160.  
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Replacing λ(y) and F(y) in (B.18) and (B.19) with their dimensional forms and re-
arrange, we obtain the equations in the following form 
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Note that for Newtonian fluids, η(y) reduces to η0. 

Although correlations (B.20) and (B.21) are derived using the equilibrium of a 
neutrally buoyant particle as the reference, they can be applied to heavy particles. To 
demonstrate this, we first obtain Us and Ωs for heavy particles at their equilibrium states 
from unconstrained simulations; these values are then inserted into (B.20) and (B.21) to 
calculate the lift forces which should match the values of the buoyant weight of the heavy 
particles. Two examples are shown in table B.6: a particle with ρp/ρf=1.016 in a flow 
with R =40 and a particle with ρp/ρf=1.045 in a flow with R =80. In both cases two stable 
equilibrium positions exist. The lift force for ye close to the wall is computed using (B.20) 
and the lift force for ye close to the centerline is computed using (B.21). It can be seen 
that the computed dimensionless lift forces are close to the values of the dimensionless 
buoyant weight (ρp/ρf -1) of the particles. In this way we demonstrate that the correlations 
derived for neutrally buoyant particles can be applied to heavy particles. 

R N
seΩ (s-1) ρp/ρf ρp/ρf -1 ye/d Ωs (s-1) Us (cm/s) L̂  

1.093 1.5765 0.2869 0.018 40 0.2094 1.016 0.016 2.377 1.1837 0.5393 0.014 
0.9476 4.332 0.4526 0.046 80 0.4255 1.045 0.045 2.705 2.737 0.8241 0.047 

Table B.6. Computation of the lift forces on heavy particles using the correlations (B.20) 
and (B.21). The computed dimensionless lift forces are close to the values of the 
dimensionless buoyant weight (ρp/ρf –1) of the particles. 

Correlations (B.20) and (B.21) apply to 2D motion of a particle in a Poiseuille flow. 
They may be compared to well-known lift expressions for a particle in a linear shear flow 
with shear rate γ& . The comparisons are at best tentative because the linear shear neglects 
the effects of shear gradients and because the lift expressions in linear shear flows are for 
indefinitely small Reynolds number perturbing Stokes flow on an unbounded domain. 
Bretherton [1962] found that the lift per unit length on a cylinder (2D sphere) at small 
values of νγ /2aR &=  is given by 

634.0))4/ln(679.0(
16.21

2 +−
=

R
U

L sη
.   (B.22) 

Saffman [1965] derived an expression for the lift on a sphere in a linear shear flow  
sorder termlower 46.6 25.05.05.0 += aUL sf γηρ &    (B.23) 

where a is the radius of the sphere. The lower order terms are: 
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 ( )[ ]γπΩπρ &2
1

8
223 −−− sfs  aU .    (B.24) 

 For a neutrally buoyant particle at equilibrium, L = 0 and from (B.22) and (B.23), Us 
= 0. The Bretherton and Saffman formulas thus predict that the slip velocity is zero for a 
neutrally buoyant particle at equilibrium in an unbounded linear shear flow. Patankar et 
al. [2001] argued that zero slip velocity is always one solution for a neutrally buoyant 
particle freely moving in an unbounded linear shear flow, but it may not be the only 
solution and it can be unstable under certain conditions not yet understood. Feng, Hu and 
Joseph [1994] showed that a neutrally buoyant particle migrates to the centerline in a 
Couette flow where Us = 0. Ho and Leal [1974] found a neutrally buoyant sphere 
equilibrates at the centerline in a Couette flow. The difference is that Feng et al. [1994] 
studied 2D particles in flows at finite Reynolds numbers; while Ho and Leal [1974] 
studied 3D spheres in flows at indefinitely small Reynolds numbers. From our 
simulations for 2D Poiseuille flows, Us ≠ 0 at the equilibrium position of a neutrally 
buoyant particle (see Fig. B.7); whereas Ωs = Ωse at equilibrium gives rise to zero lift.  

We find that our expression for the lift on the stable branch near the centerline (B.21) 
is similar to the leading term in Saffman’s expression for the lift. If we make following 

changes in equation (B.21): 
0η

ρ Vd
R f=  → 

η
γρ 2d

R f &= , the power of R (-0.515) → (-0.5), 

and use d = 2a, equation (B.21) becomes: 

aUL N
sessf )(2.365 5.05.05.0 Ω−Ω= −γηρ &    (B.25) 

Comparing (B.25) and the leading term in (B.23), we note that both expressions are linear 
in Us; both have a similar dependence on ρf, η, and a after noting that (B.25) is for the lift 
force per unit length. However, the dependence on γ& and Ωs-Ωse is greatly different.   

Another formula for the lift on a particle in an inviscid fluid in which uniform motion 
is perturbed by a weak shear was derived by Auton [1987] and a more recent satisfying 
derivation of the same result was given by Drew and Passman [1999]. They find that in a 
plane flow, 

fsUaL Ω= ρπ 3

3
4      (B.26) 

where 2/γ&−=fΩ . Our correlation (B.21) reduces to the following form at R = 22510, 

)(
3
4 2 N

sessf UaL Ω−Ω= ρπ .    (B.27) 

Extension to such a high Reynolds number is obviously beyond the range where our 
correaltions are valid.  In addition, (B.26) is for 3D spheres and not strictly comparable to 
our correlations for 2D cylinders. Therefore, the same constant in (B.26) and (B.27) is 
only intended to qualitatively demonstrate that our correlation at high Reynolds number 
can match Auton’s expression which is for inviscid fluid. The key difference between our 
correlation and Auton’s expression is that we use N

ses Ω−Ω  in (B.27), in contrast to fΩ in 
(B.26).   

Our correlations provide explicit expressions for the lift force on a particle in terms of 
the slip velocity Us and the angular slip velocity discrepancy Ωs - Ωse.  We emphasize that 
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the relative angular motion is characterized by Ωs - Ωse rather than Ωs or Ωf. By using the 
discrepancy, we are able to account for the Segrè and Silberberg effect. Our correlations 
cover the whole channel except the unstable regions. We believe that our correlations 
capture the essence of the mechanism of the lift force. 

Correlations (B.20) and (B.21) are derived for L, Us and Ωs in steady flows, i.e., they 
apply to particles with zero acceleration. For a migrating particle, correlations (B.20) and 
(B.21) are not valid, although they might give good approximations when the 
acceleration of the particle is small. The application of such correlations is to determine 
parameters of a particle at equilibrium, e.g., the equilibrium position, translational 
velocity and angular velocity. For this end, correlations which relate Us and Ωs to 
prescribed parameters are needed. We will show derivation of such correlations is 
feasible in the next section.  

 Correlations for slip velocity and angular slip velocity 

To make correlations (B.20) and (B.21) completely explicit, we need correlations 
which relate Us and Ωs to R and y/d in steady flows of Newtonian fluids. We illustrate the 
procedure for Ωs. In Fig. B.13, the steady state values of Ωs/( )2 wγ&  obtained in 
constrained simulations are plotted against y/d for five values of R. If these data are 
plotted on a log-log plot of Ωs/( )2 wγ&  versus R, we obtain straight lines one for each value 
of y/d from the wall to the centerline (five of which are shown in Fig. B.14), leading to 
power law correlations: 
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Figure B.13. The steady state values of the dimensionless angular slip velocity Ωs/( )2 wγ&  
in flows of Newtonian fluids as a function of y/d. 
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Figure B.14. Power law correlations between Ωs/( )2 wγ&  and R at five values of y/d. 

The prefactor b and exponent r in these power law correlations, which are functions 
of y/d, are plotted in Fig. B.15. With more data points, these functions could be fitted to 
splines, making (B.28) completely explicit.  
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Figure B.15. The prefactor b and exponent r in correlation (B.28) as functions of y/d. 

A similar procedure for Us leads to 
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As for b and r in (B.28), c and q could be fit to splines if more data points were available. 
Unlike correlation (B.28) which can be found at values of y/d from the wall to the 
centerline, correlation (B.29) can only be found at values of y/d on stable branches of 
steady solutions. It does not correlate well with the data for the unstable branches; in fact 
for some values of R, Us is slightly negative at some values of y/d on the unstable branch 
near the wall, which is incompatible with a power law in the form (B.29). 

In addition to (B.28) and (B.29), we also need a correlation between N
seΩ , the angular 

slip velocity of a neutrally buoyant particle at equilibrium, and R, in order to make (B.20) 
and (B.21) completely explicit. Table B.7 shows that N

seΩ /( )2 wγ&  is essentially constant 
independent of R. Using the average of these values, we obtain: 
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R 20 40 80 120 160 
N
seΩ /( )2 wγ&  5.06×10-3 5.24×10-3 5.32×10-3 5.24×10-3 5.21×10-3 

Table B.7. The dimensionless angular slip velocity of a neutrally buoyant particle at 
equilibrium is essentially a constant in flows of Newtonian fluids with R=20 – 160. 

If we now insert (B.28) - (B.30) into (B.20) and (B.21), we obtain completely explicit  
(assuming sufficient data points for b, r, c and q to be fit to splines) correlations for the 
lift force: 
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These formulas allow us to calculate L for any value of y/d on the stable branches of the 
L̂  vs. y/d curve (Fig. B.3), obviating the need for further numerical simulations. 

The equilibrium position ye/d of a particle of density ρp can be found as the value of 
y/d at which the lift force equals the buoyant weight:  

4
)(),/(

2dgRdyL fpe
πρρ −= ; 

 the slip velocities at equilibrium can then be calculated by inserting ye/d into (B.28) and 
(B.29): 
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The corresponding translational velocity Up and angular velocity Ωp of the particle at 
equilibrium may then be calculated as Up = Uf (ye) – Use and Ωp = Ωse  - 2/)( eyγ& . 

 Conclusions 

We study lifting of a cylindrical particle in plane Poiseuille flows of shear thinning 
fluids. It is known that certain regions in a channel are unstable and a particle cannot 
equilibrate in an unstable region. For example, Ho and Leal [1974] pointed out the 
centerline is an unstable equilibrium position in a 2D Poiseuille flow. Our studies show 
that the domain from the wall to the centerline in a 2D Poiseuille flow can be divided into 
four regions with the following order: wall – stable – unstable – stable – unstable – 
centerline. The distribution of these regions is affected by shear thinning. Our results 
indicate that when shear thinning effects become stronger, the unstable region at the 
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centerline shrinks, indicating that the equilibrium position of a particle could be closer to 
the centerline.  

The conclusion that the angular slip velocity discrepancy Ωs - Ωse changes sign across 
an equilibrium position established by Joseph and Ocando [2002] in Newtonian fluids is 
confirmed in shear thinning fluids. Across a stable equilibrium position, Ωs - Ωse has the 
same sign as the net lift force Ln; across an unstable equilibrium position, Ωs - Ωse has the 
opposite sign as the net lift force Ln. 

Correlations for the lift force on a particle in terms of the slip velocity Us and the 
angular slip velocity discrepancy Ωs - Ωse are derived. The correlations are a power law 
near the wall and a linear relation (which can be taken as a power law with the power of 
one) near the centerline. The correlations apply to both neutrally buoyant and heavy 
particles and cover the whole channel except the unstable regions. Two regimes, one with 
no or weak shear thinning effects and the other with strong shear thinning effects, are 
identified for the power law correlation (B.13) whereas only one regime is found for the 
linear correlation (B.14). It is noted that particle lift in strong shear thinning flows is 
different with that in flows of Newtonian fluids at high Reynolds number.  

We are able to obtain correlations between L and Us(Ωs - Ωse) with coefficients 
expressed as functions of R; these correlations cover the flows of Newtonian fluids with 
the Reynolds number in the range of 20 - 160. The correlation is compared to well known 
analytical expressions for lift force in shear flows and similarities between them are 
revealed. The major difference between them is that the angular slip velocity discrepancy 
Ωs - Ωse is used in our correlations instead of the shear rate or Ωs. We also demonstrate 
that correlations which relate Us and Ωs to prescribed parameters can be constructed and 
will make the correlations for L completely explicit. Thus the lift force in steady flows 
can be calculated using correlations at any value of y/d on stable branches from the 
prescribed parameters; the equilibrium position of a particle with a certain density can 
then be determined by the balance between the lift force and its buoyant weight.  
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E. Addendum to Chapter XI (Addendum E): Lift Force on a Sphere in 
tube flow  
(from the paper: Migration of a sphere in tube flow B.H. Yang, J. Wang, D.D. Joseph, 
H.H. Hu, T-W. Pan and R. Glowinski, J. Fluid Mech., 2005) 

Abstract 
The cross stream migration of a single neutrally buoyant rigid sphere in tube flow is 

simulated by two packages, one (ALE) based on a moving and adaptive grid and another (DLM) 

using distributed Lagrange multipliers on a fixed grid. The two packages give results in good 

agreement with each other and with experiments. A lift law ( )sessCUL Ω−Ω=  analogous to 

Γ= UL ρ  which was proposed and validated in two dimensions is validated in three dimensions 

here; C  is a constant depending on material and geometric parameters, sU  is the slip velocity 

and it is positive, sΩ  is the slip angular velocity and seΩ  is the slip angular velocity when the 

sphere is in equilibrium at the Segrè-Silberberg radius. The slip angular velocity discrepancy 

ses Ω−Ω  is the circulation for the free particle and it changes sign with the lift. A method of 

constrained simulation is used to generate data which is processed for correlation formulas for the 

lift force, slip velocity, and equilibrium position. Our formulas predict the change of sign of the 

lift force which is necessary in the Segrè-Silberberg effect. Our correlation formula is compared 

with analytical lift formulas in the literature and with the results of two-dimensional simulations. 

Our work establishes a general procedure for obtaining correlation formulas from numerical 

experiments. This procedure forms a link between numerical simulation and engineering practice. 

1. Introduction 
Migration and equilibrium of solid particles in shear flows have always been of great interest 

for researchers. Segrè and Silberberg (1961, 1962) studied the migration of dilute suspensions of 

neutrally buoyant spheres in tube flows and found the particles migrate away from both the wall 

and the centerline and accumulate at a radial position of about 0.6 times the tube radius. This 

remarkable Segrè-Silberberg effect has been verified by many experimental works on the same 

kind of problems. For example, Goldsmith and Mason (1962) observed that a rigid particle stayed 

at the initial radial position at very small Reynolds numbers and migrated to intermediate 

positions at finite Reynolds numbers. Karnis, Goldsmith and Mason (1966) reported that neutrally 

buoyant particles stabilized midway between the centerline and the wall, closer to the wall for 

larger flow rates and closer to the center for larger particles.  
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In an attempt to explain the Segrè-Silberberg effect, different analytical expressions for the 

lift force which causes the particle to migrate transversely were obtained in the literature 

(Rubinow and Keller 1961, Bretherton 1962, Saffman 1965, 1968, McLaughlin 1991, and Auton 

1987 among others). These analytical expressions are based on perturbing Stokes flow with 

inertia or on perturbing potential flow with a little vorticity. They are explicit and valuable; 

however, the restrictions on the perturbation analyses make it difficult to apply these expressions 

to practical problems where the Reynolds number is finite and viscosity is important.   

Schonberg & Hinch (1989) analyzed the lift on a neutrally buoyant small sphere in a plane 

Poiseuille flow, with the channel Reynolds number ν/lUR mc ′=  less than approximately 100, 

using matched asymptotic methods. Here mU ′  is the maximum velocity of a channel flow, and l  

is the channel width. The same problem for neutrally buoyant and non-neutrally buoyant small 

spheres has been studied by Asmolov (1999). He considered the Reynolds number based on the 

particle size to be asymptotically small while the channel Reynolds number is finite. He 

computed the lift force on a sphere as a function of the distance from the wall to the sphere center 

for flows with cR  up to 3000; the results show that the equilibrium position moves towards the 

wall as cR  increases. When the particle Reynolds number is small, the disturbance flow due to 

the particle is governed by creeping-flow equations to leading order; one can compute the 

transverse component of the velocity at the particle center and use the Stokes drag law to 

calculate the lift. The analysis takes the effect of inertia ( )uu ∇⋅  into account only in an Oseen 

linear system. The analysis is heavy and explicit formulas for the lift are not obtained. 

Feng, Hu and Joseph (1994) performed numerical simulations of the motion of a two-

dimensional circular particle in Couette and Poiseuille flows. Patankar, Huang, Ko and Joseph 

(2001) and Joseph and Ocando (2002) simulated the motion of a two-dimensional circular 

particle in plane Poiseuille flows perpendicular to gravity in Newtonian and viscoelastic fluids. 

They showed that multiple equilibrium states exist for particles with intermediate densities; these 

equilibrium states can be stable or unstable.  

Relative motions between the fluid and the particle, which may be characterized by slip 

velocities, are essential to understand the lift force on the particle. We use pU  and pΩ  to denote 

the translational and angular velocities of the particle at steady state and the slip velocities are 

defined as: 

pfs UUU −= ,  the slip velocity;                                            (1.1) 

2/γ&+Ω=Ω−Ω=Ω pfps ,  the slip angular velocity,                               (1.2) 
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where fU  and γ&  are the fluid velocity and local shear rate evaluated at the location of the 

particle center in the undisturbed flow. Joseph and Ocando (2002) found that the discrepancy 

ses Ω−Ω , where seΩ  is the slip angular velocity at equilibrium, changes sign across the 

equilibrium position just as the lift force does. Thus, this discrepancy can be used to account for 

the migration toward the intermediate equilibrium position from the centerline and the wall (the 

Segrè-Silberberg effect). 

Following Joseph and Ocando’s analysis, Wang and Joseph (2003) constructed correlations 

for the lift force by analogy with the classical lift formula Γ= UL ρ  of aerodynamics; they 

showed that the proper analogs of U  and Γ  were sU  and ses Ω−Ω . Their correlations apply to 

a freely rotating two-dimensional circular particle without accelerations in a plane Poiseuille 

flow. They also demonstrated that the correlations for lift force could be made completely explicit 

provided that the correlations relating sU  and sΩ  to prescribed parameters were obtained. 

The results from two-dimensional simulations presented by Feng, Hu and Joseph (1994), 

Patankar et al. (2001), Joseph and Ocando (2002) and Wang and Joseph (2003) are difficult to 

compare with experimental results because the majority of the experiments are for spherical 

particles in circular tube flows. The lift force correlations by Wang and Joseph are for circular 

particles and can not be rigorously compared to analytical lift expressions for spheres.  All the 

above mentioned authors used a two-dimensional finite element scheme based on unstructured 

body-fitted moving grids first developed by Hu, Joseph and Crochet (1992). Recently, Hu and 

Zhu extended the two-dimensional scheme to three-dimensional and performed simulations of the 

migration of spheres in tube Poiseuille flows (see the PhD thesis of Zhu 2000). We call this 

scheme the ALE code because an arbitrary Lagrangian-Eulerian moving mesh technique has been 

adopted to deal with the motion of the particles. The three-dimensional ALE scheme is used in 

the current work to study the lift force on a neutrally buoyant sphere in tube Poiseuille flow. 

Another approach to simulate the solid-liquid flow initiated by us is based on the principle of 

embedded or fictitious domains. In this approach, the Navier-Stokes equations are solved 

everywhere, including inside the particles. The flow inside the particles is forced to be a rigid 

body motion by a distribution of Lagrange multipliers – thus we call this scheme the DLM code. 

Detailed descriptions of the DLM method can be found in Glowinski, Pan, and Periaux (1998); 

Glowinski, Pan, Hesla, and Joseph (1999); Glowinski, Pan, Hesla, Joseph, and Periaux (1999, 

2001); Singh, Joseph, Hesla, Glowinski and Pan (2000) and Glowinski (2003). The two quite 

different schemes, the DLM code and the ALE code, are both employed to simulate the motion of 

a neutrally buoyant sphere in tube Poiseuille flow in the current work. We shall show that the 



Interrogations of DNS of Solid-Liquid Flows  Addendum to Chapter XI 

1/12/2005 E-4

results of the two codes are in good agreement, which provides strong support for the credibility 

of our numerical simulation. 

The main goal of this work is to extend the correlation of the lift force in terms of sU  and 

the discrepancy ses Ω−Ω  to three-dimensional cases, which would give a more convincing 

explanation for the Segrè-Silberberg effect. The lift force correlations represent efforts to draw 

explicit formulas from numerical simulation data. There is no reason why “empirical” formulas of 

the type used in engineering which correlate experimental data cannot be generated from the data 

produced by numerical simulations. Correlations have already been obtained for single particle 

lift (Patankar et al. 2001, Wang and Joseph 2003) and for the bed expansion of many particles 

(Choi and Joseph 2001, Patankar, Ko, Choi and Joseph 2001) by processing numerical data. Our 

works have establish general rules for the interrogation of data from numerical simulation to be 

used in developing models for complex fluid dynamics problems such as the fluidization by lift or 

drag.  

2. Governing equations and dimensionless parameters 

z

y

L

R

2

r

=d

mU

a

x

 
Figure E-1. Sketch for the problem of a rigid sphere in a tube Poiseuille flow. The sphere is neutrally 
buoyant and the orientation of the gravity is irrelevant.   
 

The governing equations for the incompressible Newtonian fluid are 

0=⋅∇ u  and ( )  P
t

2uguuu
∇++−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ µρρ ff                         (2.1) 

where ( )t,xu  is the fluid velocity, fρ  is the fluid density, ( )t,P x  is the pressure, g is the 

gravitational acceleration, and µ  is the fluid viscosity. We can absorb the gravity term in the 

Navier-Stokes equations into the pressure by decomposing the pressure as  
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xg ⋅+= fp ρP .                                                      (2.2) 

The equations of motion of the solid particles in a general three-dimensional case are 

[ ]
( ) ( ) [ ]( ) ,dP

dt
d

,dP
dt

d

p
p

p

∫

∫

Γ⋅+−×−=
⋅

Γ⋅+−+=

nτ1Xx
ΩI

nτ1g
U

mm
                                          (2.3) 

where m is the mass of the particle, Up is the translational velocity, pΩ  is the angular velocity, I 

is the moment of inertia tensor and Xp is the coordinate of the center of mass of the particle. We 

consider a solid sphere with a radius a and 3/4 3am p πρ= , ( )5/2diag 2ma=I . The no-slip 

condition is imposed on the particle boundaries 

)( ppp XxΩUu −×+=                                                          (2.4) 

and on the tube wall u = 0. The velocity profile at the inlet of the tube is prescribed by 

)/1( 22 RrUu m −= ,                                                            (2.5) 

where mU  is the maximum velocity at the centerline of the tube; r  is the radial position and R  

is the radius of the tube. The traction-free boundary condition is imposed at the outlet of the tube: 

0=⋅⋅≡ nTnnf ; 0=yu ; 0=zu ,                                               (2.6) 

where τIT +−= P  is the total stress tensor and n is the norm at the outlet of the tube.  

The undisturbed tube Poiseuille flow without particles is given by (2.5). The shear rate at the 

wall ( Rr = ) is given by RU mw /2=γ& . To non-dimensionalize the governing equations, we use 

the velocity waV γ&2=  as the characteristic velocity, a2  for length, Va /2  for time, aV 2/µ  

for stress and pressure, and wγ&  for angular velocity. The dimensionless equations are (we use the 

same symbols for dimensionless variables) 

0=⋅∇ u ,                                                                   (2.7) 

( )  
t

2uuuu
∇+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ pRe ,                                          (2.8) 

[ ]

( ) [ ]( ) ,d60
dt

d

,d6
dt

d

p
p

f

p

g
p

f

p

∫

∫

Γ⋅+−×−=

Γ⋅+−+=

nτ1Xx
Ω

nτ1e
U

pR

pGR

e

e

πρ
ρ

πρ
ρ

                                (2.9) 

where eg is the unit vector in the direction of the gravity. The dimensionless parameters are 
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( )
R

UaaaV
R mfwff

e µ
ρ

µ
γρ

µ
ρ 22 8)2(2

===
&

, the Reynolds number;                 (2.10) 

V
ag

G fp

µ
ρρ 2)2()( −

= , the gravity number;                                (2.11) 

fp ρρ / , the density ratio.                                                (2.12) 

        It is convenient to carry out the analysis of correlations in terms of dimensionless forms of 

correlating parameters. The ratio of the sphere radius a  to pipe radius R  and the dimensionless 

radial position r  are defined by 

Raa /= , Rrr /= .                                                   (2.13) 

The dimensionless lift is given by 

2

6
πµ
ρ L

L f= .                                                           (2.14) 

The flow quantities mU , sU , sΩ , seΩ  are expressed in the form of dimensionless Reynolds 

numbers. A flow Reynolds number is given by 

28a
RRU

U emf
m ==

µ
ρ

                                                 (2.15) 

Slip velocity Reynolds numbers are defined as  

( ) µρ /2aUU sfs = , 

  ( ) µρ /2 2asfs Ω=Ω ,                                                 (2.16) 

( ) µρ /2 2asefse Ω=Ω . 

A dimensionless form of the product ( )sessU Ω−Ω  which enters into our lift law is given as 

the product  

( )sessU Ω−Ω .                                                       (2.17) 

We call the reader’s attention to the fact that the flow is in the negative x direction in our 

simulation (see figure E-1). The symbol mU  in (2.10) and (2.15) should be understood as the 

magnitude of the fluid velocity at the tube centerline. Similarly, we use the magnitude of fU  and 

pU  to calculate the slip velocity sU  defined in (1.1). 

We shall focus on the steady state flow of a neutrally buoyant sphere, in which the left side 

of (2.9) and the term gGe  in (2.9) vanish. Thus, eR  and a  are the two parameters at play. 
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3. Comparison of results 
We study the behavior of a neutrally buoyant sphere suspended in tube Poiseuille flows. A 

comparison of the numerical results using the ALE code with the experiments by Karnis, 

Goldsmith and Mason (1966) was presented by Zhu (2000). Karnis et al. performed a large 

number of experiments on the migration of spheres, rods and disks in a Poiseuille flow in a 

capillary tube. Zhu (2000) compared the trajectories of spheres released at two radio positions r  

= 0.21 and 0.68 to the trajectories measured by Karnis et al. Figure E-2 shows that the numerical 

results are in excellent agreement with the experimental ones. 

 
Figure E-2. Comparison of migration trajectories of a neutrally buoyant sphere calculated numerically 
with the ones measured in the experiments of Karnis, Goldsmith and Mason (1966). The fluid 
properties are 05.1=fρ g⋅cm-3 and 2.1=µ poises, the flow rate is 21011.7 −×=Q cm3/sec, the tube 
diameter is 4.0=D cm, and the sphere diameter is 122.0=d cm.  
 

An equilibrium for a free neutrally buoyant particle is achieved when the particle migrates to 

a radial position er  of steady rectilinear motion in which the acceleration and angular acceleration 

vanish and the hydrodynamic lift force is zero. We perform two types of simulations, 

unconstrained and constrained simulations, to find the equilibrium position. In unconstrained 

simulation, the particle moves freely until it reaches its equilibrium position, just as it would do in 

experiments. In constrained simulation, the particle is only allowed to move along a line parallel 

to the axis of the tube and rotate freely; its lateral migration is suppressed and radial position is 

fixed. When such a constrained motion reaches steady state in which the particle accelerations 

vanish, a hydrodynamic lift force L in the radial direction can be calculated. This lift force L  is a 

function of the radial position; the position where L = 0 is the equilibrium position er . In our 

constrained simulation, we place the sphere center at (y = r, z = 0) (see figure E-1), so that the lift 
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force at steady state is in y direction and z direction is the neutral direction. The only component 

of the particle translational velocity at steady state is xU  and zΩ  is the only component of the 

angular velocity. 

We compare the results of the unconstrained and constrained simulations obtained using the 

ALE code and the DLM code. In the ALE code, the typical mesh used in most of our simulations 

consists of 1.05×105 elements, 1.46×105 nodes and 1.9×104 vertices. The number of nodes for 

velocity is about 2.22×106 in the DLM code. We consider a case in which the radii of the particle 

and the tube are 0.375 cm and 2.5 cm respectively (the radius ratio a  = 0.15), the density of the 

particle and the fluid is 1g/cm3, the viscosity of the fluid is 1 poise, and 20=mU  cm/sec ( eR  = 

9). We compare the equilibrium position er  and velocities xU  and zΩ  at equilibrium calculated 

from the unconstrained simulation in table E-1. We compare the lift force ( )rL , velocities ( )rU x  

and ( )rzΩ , calculated from the constrained simulation in figure E-3. 

 
er  xU (cm/sec) zΩ (sec-1) 

ALE 0.601 12.4 4.65 
DLM 0.606 12.2 4.63 

Table E-1. The equilibrium position er  and particle velocities xU  and zΩ  at equilibrium calculated 
from the unconstrained simulation. The results of the ALE and DLM codes are almost the same. 

.                                          (a)                                                                      (b) 
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                                                                                       (c) 
Figure E-3. The steady state values of the particle velocities xU  (a) and zΩ  (b) and the lift force L  
(c), from the constrained simulation at different radial positions. The ALE and DLM results are in 
good agreement. 
 

Figures E-3.a and E-3.b show that the particle translational and angular velocities obtained 

from the DLM and ALE codes are almost the same. The agreement of the lift forces from the two 

codes in figure E-3.c is not as good as the velocities. The lift force curve from the DLM code is 

not quite smooth since this method was intended to simulate the dynamics of the interaction of 

fluid and many particles and not to compute the hydrodynamic forces explicitly. Nevertheless, we 

regard the agreement in figure E-3.c acceptable, considering the challenging nature of the three-

dimensional simulation. Due to mesh adaptivity, the ALE code is more suited to accurate 

computation of lift. We will use the data from the ALE code to construct the lift correlations in 

the following section. 

Our two different codes give results in good agreement with each other and with 

experiments, which demonstrates that our numerical simulation is credible. 

4. Correlations from the numerical simulation 
Numerical experiments using constrained simulation provide us with the distribution of the 

lift force and particle velocity in the tube and the position and velocity of the particle at 

equilibrium. We develop correlations for these quantities in this section. The key correlation is for 

the lift force, which shows the dependence of the lift force on the slip angular velocity 

discrepancy ses Ω−Ω . The lift force correlation predicts the change of sign of the lift force, 

which is necessary to explain the two-way migration in the Segrè-Silberberg effect. The 

correlations for the equilibrium state of the particle are also of interest, because they may be used 

to predict the position and the velocities of the particle at equilibrium. 
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4.1 Correlation for the lift force 
The steady state values of the lift forces on a sphere at different radial positions computed in 

constrained simulation are plotted in figure 4 for a sphere with the radius ratio a  = 0.15. The 

positive direction of the lift force is in the negative re  direction. In other words, L  is positive 

when pointing to the centerline and negative when pointing away from the centerline. 

                                                                            (a) 

(b) 
Figure E-4. The dimensionless lift force L  at different radial positions for a sphere with the radius 
ratio a  = 0.15. The two curves in (a) correspond to eR  = 1 and 2, and the four curves in (b) 
correspond to eR  = 9, 13.5, 18 and 22.5, respectively. The magnitude of the lift force increases with 
the Reynolds number.  
 

The equilibrium positions of a neutrally buoyant sphere are the points where L  = 0. The 

stability of the equilibrium at a zero-lift point can be determined from the slope of the L  vs. r  

curve. The centerline is on a negative-slope branch of the L  vs. r  curve. When a particle is 

disturbed away from the centerline, the lift force is negative and drives the particle further away 
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from the centerline. Therefore the centerline is an unstable equilibrium position. The other zero-

lift point is between the centerline and the wall and it is on a positive-slope branch of the curve. 

When the particle is disturbed away from this point, the lift force tends to push the particle back. 

Thus the zero-lift point between the centerline and the wall is a stable equilibrium position.  

Figure E-4 shows that this stable equilibrium position er  moves towards the wall as the Reynolds 

number increases. 

We seek expressions for the lift force in terms of the slip velocities. The slip velocity 

Reynolds numbers have been defined in (2.16). We plot ses Ω−Ω  at different radial positions in 

figure E-5 for a sphere with a  = 0.15. Comparison of figure E-4 and figure E-5 shows that the 

discrepancy ses Ω−Ω  changes sign across the equilibrium position, just like the lift force L  

does. 
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Figure E-5. The dimensionless slip angular velocity discrepancy at different radial positions for a 
sphere with a  = 0.15. The two curves in (a) correspond to eR  = 1 and 2, and the four curves in (b) 
correspond to eR = 9, 13.5, 18 and 22.5, respectively.  
 

If we fix the radius ratio a = 0.15 and continue to increase the Reynolds number, the 

distribution of the lift force as a function of the radial position becomes more complicated. We 

plot the L vs. r  curves for eR  = 27, 36 and 45 in figure E-6. There is a change of convexity in 

the curves and a local minimum of the lift force exists at approximately r  = 0.55. On each of the 

curves, there exist two branches on which the slope of the curve is negative. The first negative-

slope branch is at the centerline; the second negative-slope branch is in the middle between the 

centerline and the wall. The second negative-slope branch does not exist when the Reynolds 

number is small ( eR  = 1, 2, 9, 13.5, 18 or 22.5). The exact range of the second negative-slope 

branch varies with the Reynolds number; we may say that the range 0.5 ≤ r ≤ 0.65 covers the 

second negative-slope branches of the curves for eR  = 27, 36 and 45. We found that it was 

difficult for the constrained simulations in this range at high Reynolds numbers to converge to a 

steady state; a refined mesh was necessary to obtain converged results in these simulations. For 

example, when 1=eR , the typical mesh used in our simulations consists of 41009.9 ×  elements, 

51028.1 ×  nodes and 41068.1 ×  vertices; when 45=eR , the typical mesh consists of 

41086.9 ×  elements, 51039.1 ×  nodes and 41082.1 ×  vertices. 

Figure E-6. The dimensionless lift force L  at different radial positions for a sphere with a  = 0.15. 
The three curves corresponds to eR = 27, 36 and 45, respectively. On each of the curve, there exist 
two branches on which the slope of the curve is negative. 
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Similar complicated distributions of the lift force can be observed in Asmolov’s (1999) 

calculation of the lift force on a small neutrally buoyant sphere in a plane Poiseuille flow. In his 

figure E-8, the lift is plotted as a function of d/l, where d is the distance from the wall to the 

particle center and l is the channel width. Five curves for five channel Reynolds numbers cR  = 

15, 100, 300, 1000 and 3000 are plotted. There is only one negative-slope branch on the curves 

for cR  = 15 and 100, which is at the centerline. There are two negative-slope branches on the 

curves for cR  = 300, 1000 and 3000. One of the branches is at the centerline and the other is 

between the centerline and the wall. Both our numerical simulation and Asmolov’s (1999) 

calculation using matched asymptotic methods show that at high eR , there exists a local 

minimum of the lift force between the centerline and the stable equilibrium position. This 

observation prompts us to consider the possibility of multiple equilibrium positions for neutrally 

buoyant particles in Poiseuille flows.  

Matas, Morris and Guazzelli (2004) measured lateral migration of dilute suspensions of 

neutrally buoyant spheres in pipe flows; they observed single equilibrium positions when mU  is 

low (60, 350) and multiple equilibrium positions when mU  is high (760). In their experiments 

using spheres with 06875.0=a  in flows with 760=mU , they observed a first equilibrium 

position close to the wall and a second equilibrium position at 2.05.0 ±=r . They also reported 

that when mU  is increased to 1500, the first equilibrium position close to the wall disappeared 

and the second equilibrium position became the only equilibrium position. Matas, Morris and 

Guazzelli proposed to explain the second equilibrium position using the change of convexity in 

the lift force profiles obtained from the matched asymptotic methods. They argued that the 

particles could accumulate in the region near the local minimum of the lift force. 

 In numerical simulations, Patankar, Huang, Ko and Joseph (2001) reported multiple 

equilibrium positions for particles heavier than the fluid in plane Poiseuille flows perpendicular to 

the gravity. We have not obtained multiple equilibrium positions in simulations for a neutrally 

buoyant sphere in pipe flows. We are not able to run simulations matching the experimental 

conditions under which multiple equilibrium positions were observed. From figure E-6, it seems 

possible that a second stable equilibrium position appears near 55.0=r  at higher Re. It is also 

possible that the second equilibrium position arises from particle interaction in the experiments. 

The existence of multiple equilibrium positions for a single neutrally buoyant particle in a pipe 

flow is still an open question.   
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The ses Ω−Ω  vs. r  curves for the cases with a  = 0.15 and Re = 27, 36 or 45 are plotted in 

figure E-7. Our assertion that the lift force changes sign with the discrepancy ses Ω−Ω  remains 

true for Re = 27 and 36 but not for Re = 45. When Re = 45, ses Ω−Ω  changes sign twice in the 

range 0 < r  < 0.5 (figure E-7); however, the lift force remains negative in the same range (figure 

E-6). Our assertion is true in the vicinity of the stable equilibrium position at all the Reynolds 

numbers, which will be the region in which the lift correlation is developed. 

Figure E-7. The dimensionless slip angular velocity discrepancy at different radial positions for a 
sphere with a  = 0.15. The three curves correspond to eR  = 27, 36, and 45, respectively. 
 

We seek correlations between the lift force L  and the product  

( )sessUF Ω−Ω= .                                                          (4.1) 

From our data, we noted that in the vicinity of the stable equilibrium position, the relation 

between L  and F may be represented by a linear correlation: 

( ) ( ) ( )aRrFaRkaRrL eee ,,,,, = ,                                             (4.2) 

where k is the proportionality coefficient which depends on the Reynolds number and the radius 

ratio a . Some examples of the linear correlation between L  and F are plotted in figure E-8 and 

the values of k are listed in table E-2. The linear correlation (4.2) is not valid far away from the 

equilibrium position; we also list the range of the radial position in which the linear correlation is 

valid in table E-2.  
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Figure E-8. The linear correlation between L  and F in the vicinity of the stable equilibrium position 
of a neutrally buoyant particle. (a) eR  = 1, a  = 0.15; (b) eR  = 9, a  = 0.15; (c) eR  = 18, a  = 0.15; 
(d) eR  = 1, a  = 0.1; (e) eR  = 4, a  = 0.1; (f) eR  = 8, a  = 0.1. 
 

a  eR  k equilibrium position er  range of the linear correlation 
1 742 0.603 0.2 ≤ r  ≤ 0.7 
2 620 0.608 0.3 ≤ r  ≤ 0.7 
4 325 0.638 0.4 ≤ r  ≤ 0.75 
6 268 0.661 0.55 ≤ r  ≤ 0.75 
8 254 0.674 0.6 ≤ r  ≤ 0.75 

10 201 0.684 0.6 ≤ r  ≤ 0.75 

  0.1 

12 169 0.708 0.65 ≤ r  ≤ 0.8 
1 369 0.573 0.3 ≤ r  ≤ 0.6 
2 346 0.573 0.3 ≤ r  ≤ 0.6 
9 130 0.601 0.4 ≤ r  ≤ 0.65 

13.5 77.2 0.623 0.45 ≤ r  ≤ 0.7 

 0.15 

18 62.5 0.642 0.5 ≤ r  ≤ 0.7 
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22.5 53.5 0.657 0.55 ≤ r  ≤ 0.7 
27 56.5 0.670 0.6 ≤ r  ≤ 0.75 
36 69.8 0.691 0.65 ≤ r  ≤ 0.75 
45 85.2 0.700 0.67 ≤ r  ≤ 0.75 

Table E-2. The values of the proportionality coefficient k and the equilibrium position er  as functions 
of the radius ratio a  and eR . The range of the radial position in which the linear correlation (4.2) is 
valid is also listed.  

The value of k decreases as eR  increases when the Reynolds number is low. However, k 

increases as eR  increases when 27≥eR . This change is possibly related to the emergence of the 

second negative-slope branch on the L  vs. r  plot at high Reynolds numbers. We shall focus on 

the low Reynolds number cases and data fitting analyses lead to expressions for k  in terms of the 

Reynolds number: 
604.0809 −= eRk , for a  = 0.1   and 121 ≤≤ eR ;                                (4.3) 

658.0450 −= eRk , for a  = 0.15 and 5.221 ≤≤ eR .                             (4.4) 

Inserting the expression of k  into the linear correlation (4.2), we can obtain the correlations 

between L  and F . To reveal the dependence of the lift force on the slip velocities explicitly, we 

substitute the definitions of L  and F  into the linear correlation and it follows that 

( )( )3604.0 2424 aURL sessfe Ω−Ω= − ρ ,   for a  = 0.1;                   (4.5) 

( )( )3658.0 2236 aURL sessfe Ω−Ω= − ρ ,   for a  = 0.15.                 (4.6) 

Both of these two correlations are analogous to the lift correlation we obtained in the two-

dimensional cases (Wang and Joseph 2003):  

( )( )2515.0 26.182 aURL sessfe Ω−Ω= − ρ ,   (4.7) 

which is for the lift force per unit length on a cylindrical particle whose diameter is 1/12 of the 

channel width. It is noted that the exponent of the Reynolds number is –0.604 in (4.5) and it is 

closer to the value –0.515 in (4.7).  

The lift force in our correlation is on a freely rotating particle translating at steady velocity. 

Thus correlations (4.5) and (4.6) apply to particles with zero acceleration. For a migrating particle 

with substantial acceleration, correlations (4.5) and (4.6) may not be valid. 

4.2 Correlations for the slip velocity Us and slip angular velocity Ωs  
Besides the lift force on the particle, the translational and angular velocities of the particle at 

steady state are also of interest. We shall construct correlations for the slip velocity sU  and slip 
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angular velocity sΩ  from constrained simulations; the particle velocities can then be easily 

computed using (1.1) and (1.2). The correlations for sU  and sΩ  are necessary to compute the lift 

force, because they appear in the lift correlations (4.5) and (4.6). 

We illustrate the correlation construction for a particle with the radius ratio a  = 0.15. We 

plot the Reynolds number sΩ  on log-log plots versus eR ; straight lines one for each value of r  

are obtained. Similar straight lines on log-log plots are obtained when we plot sU  versus eR . 

Examples of such plots are shown in figure E-9.a and 9.b for sΩ  vs. eR  and sU  vs. eR , 

respectively.  

                                                                          (a)  

                                                                                  (b)  

Figure E-9. Power law correlations of (a) sΩ  vs. eR  and (b) sU  vs. eR  at different values of r  for a 
sphere with 15.0=a .  

Power law correlations arise from the straight lines in log-log plots for sΩ  and sU  

( ) ( ) ( )arm
ees RarbaRrU ,,,, = ,                                            (4.8) 
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( ) ( ) ( )arn
ees RarcaRr ,,,, =Ω .                                            (4.9) 

The coefficients b, m, c, and n are obtained for a particle with a  = 0.15 in the range 0.1 ≤ r  ≤ 

0.8 and plotted in figure E-10. Exponential fitting and linear fitting may give reasonable 

approximations to the prefactors b and c and exponents m and n, respectively: 

( )rb 2.2exp101.1 2−×= ,  ( )rc 8.8exp103.2 5−×= ;  (4.10)  

6.11.1 +−= rm ,  7.21.2 +−= rn .   (4.11) 

Substitution of (4.10) and (4.11) into (4.8) and (4.9) leads to explicit expressions for sU  and sΩ  

( ) 6.11.12 2.2exp101.1 +−−×= r
es RrU ,                                   (4.12) 

( ) 7.21.25 8.8exp103.2 +−−×=Ω r
es Rr ,                                   (4.13) 

which apply to a particle with a  = 0.15 in the range 0.1 ≤ r  ≤ 0.8. Correlation (4.12) and (4.13) 

are generally valid in the range of 1 ≤ Re ≤ 45. However, correlation (4.12) is not in good 

agreement with the data for sU  on the second negative-slope branch on the L  vs. r  curve (0.5 ≤ 

r  ≤ 0.65) at high Reynolds numbers (Re = 27, 36 and 45). Thus correlation (4.12) in the range 

0.5 ≤ r  ≤ 0.65 is valid only for 1 ≤ Re ≤ 22.5. 
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Figure E-10. The prefactors b and c and exponents m and n in correlations (4.8) and (4.9) for a particle 

with a  = 0.15 in the range 0.1 ≤ r  ≤ 0.8. 

Correlations for sU  and sΩ  for a  = 0.1 are developed using the same procedure as for a  

= 0.15. We omit the details of derivation and only give the final formulas for sU  and sΩ  

( ) 9.14.13 8.1exp103.8 +−−×= r
es RrU ,                                        (4.14) 

( ) 8.33.36 0.9exp107.7 +−−×=Ω r
es Rr ,                                        (4.15) 

which apply to a particle with a  = 0.1 in the range 0.05 ≤ r  ≤ 0.85. The range of the Reynolds 

number in which (4.14) and (4.15) is valid is 1 ≤ Re ≤ 12. 

4.3. Correlations for the particle parameters at equilibrium 
 The equilibrium state of a particle is always the focus of the study of particle migration. We 

obtain the particle parameters at stable equilibrium, such as the equilibrium position er , the slip 

velocity Use and the slip angular velocity Ωse by unconstrained simulation and find that they may 

be correlated to the Reynolds number. We summarize the particle parameters at stable 

equilibrium in table E-3.  

a  Re mU  er  seΩ  seU  
0.05 2 100 0.731 0.00710 0.0247 

1 12.5 0.603 0.00188 0.0219 
2 25 0.608 0.00509 0.0444 
4 50 0.638 0.0209 0.0901 
6 75 0.661 0.0498 0.152 
8 100 0.674 0.0901 0.470 

10 125 0.684 0.139 0.712 

0.1 

12 150 0.708 0.202 0.296 
1 5.56 0.573 0.00354 0.0338 
2 11.1 0.573 0.00765 0.0675 
9 50 0.601 0.0861 0.306 

13.5 75 0.623 0.197 0.482 
18 100 0.642 0.342 0.730 

22.5 125 0.657 0.513 0.785 
27 150 0.670 0.705 1.07 
36 200 0.691 1.16 1.18 

0.15 

45 250 0.700 1.67 1.74 
0.2 32 100 0.598 0.793 1.74 

0.25 50 100 0.567 1.49 2.84 
 

Table E-3. Particle parameters at stable equilibrium: the equilibrium position er , the dimensionless 

slip angular velocity ( ) µρ /2 2asefse Ω=Ω  and the dimensionless slip velocity 

( ) µρ /2aUU sefse = . 
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Figure E-11. The stable equilibrium position er  of a neutrally buoyant sphere as a function of the 
Reynolds number. The two power law curves are for spheres with a  = 0.10 and a  = 0.15 
respectively. All the points on the dotted line are for the same flow Reynolds number mU  = 100; the 

dotted line shows that when mU  is fixed, the equilibrium position becomes closer to the centerline as 
a  increases. 

We can correlate the stable equilibrium position of a neutrally buoyant sphere with the 

Reynolds number (see figure E-11): 
0644.0591.0 ee Rr =      for a  = 0.1;                                           (4.16) 

0546.0555.0 ee Rr =      for a  = 0.15.                                          (4.17) 

The equilibrium position er  moves closer to the wall as the Reynolds number increases. We also 

observe that when the flow Reynolds number mU  is fixed, the larger particle finds its equilibrium 

position closer to the centerline than the smaller particle. The above observations are in 

agreement with the experiments by Karnis, Goldsmith and Mason (1966), who reported that 

neutrally buoyant particles stabilized closer to the wall for larger flow rates and closer to the 

center for larger particles. 

Matas, Morris and Guazzelli (2004) reported that for neutrally buoyant spheres with a 

diameter 900=d µm in the pipe of diameter 8=D mm, the equilibrium position is er  = 

0.64 ± 0.04 for 60=mU  and 04.078.0 ±=er  for mU = 350. The value of a  is close to 0.1 in 

these experiments, thus we can compare correlation (4.16) to the experimental results. Equations 

(4.16) and (2.15) predict er  = 0.654, 0.732 for mU = 60, 350 respectively, in good agreement 
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with the experimental results. Matas, Morris and Guazzeli (2004) stated that the matched 

asymptotic calculation (Schonberg & Hinch 1989, Asmolov 1999) predicts that er  = 0.71, 0.85 

for mU  = 60, 350 respectively, in both cases larger than the experimental value. They attributed 

this difference to the relatively large size of the particles. They reported that when smaller 

particles (200 µm) were used in the experiments, equilibrium positions were closer to the 

theoretical predictions. The actual values of er  for 200 µm particles are not reported in their 

paper, but we can infer that er  for 200 µm particles is larger than er  for 900 µm particles at the 

same mU . This agrees with our conclusion that the larger particle finds its equilibrium position 

closer to the centerline than the smaller particle at a fixed mU . 

If we correlate the dimensionless slip angular velocity at equilibrium seΩ  with the Reynolds 

number Re, we obtain (see figure E-12) 
72.10023.0 ese R=Ω  i.e. ( )272.1 4/0023.0 aR fese ρµ=Ω .                      (4.18) 

This correlation appears to be applicable to a wide range of the radius ratio: 0.05 ≤ a  ≤ 0.25. 

Correlation (4.18) is important because it gives explicitly the slip angular velocity when the 

particle is at stable equilibrium.   

Figure E-12. The correlation between seΩ  and the Reynolds number eR . 

Now with all the correlations for k , sU , sΩ , and seΩ  available, we are at a position to 

make the lift correlation (4.2) completely explicit. Take a particle with a  = 0.15 for example, 

( )sessUkL Ω−Ω= ,                                                   (4.19) 
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where k , sU , sΩ , and seΩ  are given in (4.4), (4.12), (4.13) and (4.18) respectively. Therefore, 

we are able to compute the lift force on a particle at different radial positions from the Reynolds 

number and radius ratio. It should be noted that the lift force applies to a freely rotating particle 

translating at a steady speed. 

If we set L  in (4.19) to zero, we can solve for the equilibrium position er . The value 

0=L  is given by ses Ω=Ω ; this leads to a formula for the equilibrium position 

e

e
e R

Rr
ln1.28.8
ln98.06.4

−
−

= ,                                                   (4.20) 

for a particle with a  = 0.15 which can be compared to correlation (4.17).  Formula (4.17) and 

(4.20) give rise to similar values for er  in the range 1 ≤ Re ≤ 22.5 (see figure E-13); (4.17) gives a 

better approximation to the simulation results because it is directly developed for er . When 

5.22>eR , the agreement is not good between (4.17) and (4.20). 

 
 

 

Figure E-13. The values of er  computed by equations (4.17) and (4.20) in the range 1 ≤ Re ≤ 22.5 for 
15.0=a . 

       A summary of our correlations is presented in Table E-4 below. Correlation formula 

exhibiting the dependence of prefactors and exponents on a  requires more computation. 
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Table E-4. Structure of the correlations for the lift law 

5. Comparison of lift expressions 
Wang and Joseph (2003) compared the lift correlation (4.7) with analytical lift expressions 

in the literature. Their comparison was limited because the correlation (4.7) is for a two-

dimensional cylindrical particle whereas the lift expressions of Saffman (1965, 1968) and Auton 

(1987) are for a sphere. A comparison between correlations (4.5) and (4.6) with the 

aforementioned analytical lift expressions is more sensible; though the comparison is still 

tentative because the analytical lift expressions are for a particle in a linear shear flow on an 

unbounded domain whereas our 3D simulation is in a tube Poiseuille flow. We will compare the 

correlation (4.5) to the analytical lift expressions with these caveats in mind. 

Auton (1987) derived a lift expression for a fixed sphere in an inviscid fluid in which 

uniform motion is perturbed by a weak shear: 

L = )( 
3
2 3 Uuω −×ρπa .                                                  (5.1) 

In the case under consideration, γ&zeω =  and sUxeUu =− ; the lift force in y direction is  

γρπ &sUaL 3

3
2

= ,                                                        (5.2) 

( ) ( )arm
es RarbU ;;=  

( ) 6.11.12 2.2exp101.1 +−−×= r
es RrU             for 15.0=a  

( ) 9.14.13 8.1exp103.8 +−−×= r
es RrU              for 1.0=a  

 

72.10023.0 ese R=Ω                       25.005.0 ≤≤ a  
                                            applicable to a wide range of a  

( ) ( )aq
ee Rafr =                    a             ( )af            ( )aq  

                                              0.1            0.591          0.0644 
                                           0.15          0.555          0.0546
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which is similar to our correlation (4.5) but differs from them in several ways: (5.2) has a 

constant prefactor for inviscid fluids whereas viscous effects enter into (4.5) through eR ;  the lift 

force depends on γ&  in (5.2) but on the discrepancy ses Ω−Ω  in (4.5);  (5.2) is for a fixed 3D 

sphere while (4.5) is for a freely rotating sphere with zero acceleration.  

Saffman 1965, 1968 obtained an expression for the lift force on a rotating sphere in an 

unbounded linear shear flow at indefinitely small Reynolds number: 

sorder termlower 46.6 25.05.05.0 += aUL sf γµρ & .   (5.3) 

If we make following changes in equation (4.5): µγρ /)2( 2aR wfe &= , the power of eR  )604.0(−  

→  )5.0(− , then equation (4.5) becomes: 

25.05.05.0 )(1696 aUL seswsf Ω−Ω= −γµρ & .                                       (5.4) 

Comparing (5.4) and the leading term in (5.3), we note that both expressions are linear in sU ; 

both have a similar dependence on fρ , µ , and a . However, the dependence on γ&  and 

ses Ω−Ω  is greatly different. 

For a neutrally buoyant particle at equilibrium, L = 0 and equations (5.2) and (5.3) imply Us 

= 0. The Auton and Saffman formulas thus predict that the slip velocity is zero for a neutrally 

buoyant sphere at equilibrium.  

McLaughlin (1991) generalized Saffman’s analysis to remove the restriction that the 

Reynolds number sU  based on slip velocity sU  is much smaller than the square root of the 

Reynolds number eR  based on the shear rate and derived an expression for the lift force: 

  , )(
255.2

6.46 20.50.55.0 εγµρ JaUL sf &=                                     (5.5) 

where 

µ
ρ

µ
γρ

ε
aU

U
a

R
U
R sf

s
f

e
s

e 2
,

)2(
 , 

2

===
&

 

and J is a function of ε only and has a value of 2.255 as ε → ∞ (the Saffman limit). Equation (5.5) 

shows that zero lift force is obtained when 0=sU  or ( ) 0=εJ . The solution provided by 

McLaughlin gives ( ) 0=εJ  at 215.0=ε , i.e., 215.0/es RU = . Hence, sU  is not single 

valued for 0=L .  
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In the lift expressions given by Auton, Saffman, and McLaughlin, zero lift force is 

determined by the slip velocity sU . This is not the case in our simulation for a sphere in tube 

Poiseuille flows; our results show that ses Ω=Ω  gives rise to zero lift. The difference may be 

due to the fact that linear shear flow has a zero shear gradient whereas the shear gradient in 

Poiseuille flow is a constant and not small.  

6. Conclusion and discussion 
● The motion of a single neutrally buoyant rigid sphere in tube Poiseuille flow is simulated 

by two methods: (1) an ALE arbitrary Lagrangian-Eulerian scheme with a moving adaptive mesh 

and (2) a DLM distributed Lagrange multiplier / fictitious domain method. The two methods give 

the same results, and the simulation agrees with experiments. 

● A lift law ( )sessCUL Ω−Ω=  analogous to Γ= UL ρ  of classical aerodynamics which 

was proposed and validated in two dimensions is validated in three dimensions here; sU  is the 

slip velocity and it is positive, sΩ  is the slip angular velocity and seΩ  is the slip angular velocity 

when the sphere is in equilibrium at the Segré-Silberberg radius. 

● The slip angular velocity discrepancy ses Ω−Ω  is the circulation for the free particle and 

it is shown to change sign with the lift. 

● Numerical experiments using the method of constrained simulation generated data for the 

lift force and velocities of a freely rotating sphere in steady flows arising from initial value 

problems in which the sphere is constrained to move at a fixed radius. 

● Constrained simulations are very efficient. The lift and all velocities are obtained for 

different radii at each specified Reynolds number and radius ratio Raa /= . 

● Equilibrium may be identified at the Segré-Silberberg radius at which the lift vanishes 

(for a neutrally buoyant particle). The equilibrium slip angular velocity is the slip angular velocity 

at this equilibrium radius. 

● Data generated by constrained simulations are processed for straight lines in log-log plots 

and give rise to get explicit power-law formula for all the quantities in the lift law as a function of 

eR  and a . We go from data to formulas. 

● The equilibrium position (the Segré-Silberberg radius) moves towards the wall as eR  

increases at each fixed a ; it moves towards the centerline as a  increases at a fixed flow 

Reynolds number mU . 
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● Our correlations are compared with analytical lift formulas in the literature. None of the 

analytic formulas for lift change sign at Segré-Silberberg radius. These formulas also leave the 

form of the slip velocity sU  obscure. 

The lift law we have proposed for free circular and spherical particles is analogous to the 

aerodynamic lift law ΓUρ  in the case of a rotating circle for which Ω=Γ 22 aπ . It is probable 

that the lift law for free bodies of more general shape is in the form ssCUL Γ=  where C depends 

on fluid properties and geometric parameters and sΓ  is unknown. The determination of Γ  even 

in aerodynamic theory is a complicated problem. In airfoil theory, Γ  is strongly coordinated with 

the attack angle of the airfoil. A similar coordination of the circulation with the attack angle is 

apparently generated by the motion of a free ellipse in a plane Poiseuille flow (Feng, Huang and 

Joseph, 1995). This problem could be framed in terms of the equilibrium position and orientation 

of an ellipse in a plane Poiseuille flow. As in the case of circular particles, the equilibrium 

position is decided by a balance of buoyant weight and lift, where the lift arises as a competition 

of forces arising from shear gradients and wall effects. This problem ought to be studied by the 

technique of constrained simulation discussed here. At each fixed y, the motion of the ellipse 

would evolve to a steady state with a fixed angle of attack. This lift on the ellipse at this y could 

be computed and, of course, as in the case of circular and spherical particles, this lift would 

balance the buoyant weight, zero for neutrally buoyant particles, at equilibrium, with a certain 

equilibrium attack angle. The lift must change sign with the attack angle discrepancy. 

This paper aims at presenting a general procedure and data structure for the interrogation of 

numerical simulation data. Our goal is to draw explicit formulas from numerical data, which may 

be used to model complex problems, obviating further expensive computation. The procedure 

involves identifying controlling dimensionless groups and data fitting analyses which lead to 

expressions for the quantities of interest in terms of prescribed parameters. We believe when 

properly used, this procedure may help to reveal the underlying physics of the problem and 

generate practically useful formulas at the same time.  
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E. Addendum to Chapter XI (Addendum E): Lift Force on a Sphere in 
tube flow  
(from the paper: Migration of a sphere in tube flow B.H. Yang, J. Wang, D.D. Joseph, 
H.H. Hu, T-W. Pan and R. Glowinski, J. Fluid Mech., 2005) 

Abstract 
The cross stream migration of a single neutrally buoyant rigid sphere in tube flow is 

simulated by two packages, one (ALE) based on a moving and adaptive grid and another (DLM) 

using distributed Lagrange multipliers on a fixed grid. The two packages give results in good 

agreement with each other and with experiments. A lift law ( )sessCUL Ω−Ω=  analogous to 

Γ= UL ρ  which was proposed and validated in two dimensions is validated in three dimensions 

here; C  is a constant depending on material and geometric parameters, sU  is the slip velocity 

and it is positive, sΩ  is the slip angular velocity and seΩ  is the slip angular velocity when the 

sphere is in equilibrium at the Segrè-Silberberg radius. The slip angular velocity discrepancy 

ses Ω−Ω  is the circulation for the free particle and it changes sign with the lift. A method of 

constrained simulation is used to generate data which is processed for correlation formulas for the 

lift force, slip velocity, and equilibrium position. Our formulas predict the change of sign of the 

lift force which is necessary in the Segrè-Silberberg effect. Our correlation formula is compared 

with analytical lift formulas in the literature and with the results of two-dimensional simulations. 

Our work establishes a general procedure for obtaining correlation formulas from numerical 

experiments. This procedure forms a link between numerical simulation and engineering practice. 

1. Introduction 
Migration and equilibrium of solid particles in shear flows have always been of great interest 

for researchers. Segrè and Silberberg (1961, 1962) studied the migration of dilute suspensions of 

neutrally buoyant spheres in tube flows and found the particles migrate away from both the wall 

and the centerline and accumulate at a radial position of about 0.6 times the tube radius. This 

remarkable Segrè-Silberberg effect has been verified by many experimental works on the same 

kind of problems. For example, Goldsmith and Mason (1962) observed that a rigid particle stayed 

at the initial radial position at very small Reynolds numbers and migrated to intermediate 

positions at finite Reynolds numbers. Karnis, Goldsmith and Mason (1966) reported that neutrally 

buoyant particles stabilized midway between the centerline and the wall, closer to the wall for 

larger flow rates and closer to the center for larger particles.  
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In an attempt to explain the Segrè-Silberberg effect, different analytical expressions for the 

lift force which causes the particle to migrate transversely were obtained in the literature 

(Rubinow and Keller 1961, Bretherton 1962, Saffman 1965, 1968, McLaughlin 1991, and Auton 

1987 among others). These analytical expressions are based on perturbing Stokes flow with 

inertia or on perturbing potential flow with a little vorticity. They are explicit and valuable; 

however, the restrictions on the perturbation analyses make it difficult to apply these expressions 

to practical problems where the Reynolds number is finite and viscosity is important.   

Schonberg & Hinch (1989) analyzed the lift on a neutrally buoyant small sphere in a plane 

Poiseuille flow, with the channel Reynolds number ν/lUR mc ′=  less than approximately 100, 

using matched asymptotic methods. Here mU ′  is the maximum velocity of a channel flow, and l  

is the channel width. The same problem for neutrally buoyant and non-neutrally buoyant small 

spheres has been studied by Asmolov (1999). He considered the Reynolds number based on the 

particle size to be asymptotically small while the channel Reynolds number is finite. He 

computed the lift force on a sphere as a function of the distance from the wall to the sphere center 

for flows with cR  up to 3000; the results show that the equilibrium position moves towards the 

wall as cR  increases. When the particle Reynolds number is small, the disturbance flow due to 

the particle is governed by creeping-flow equations to leading order; one can compute the 

transverse component of the velocity at the particle center and use the Stokes drag law to 

calculate the lift. The analysis takes the effect of inertia ( )uu ∇⋅  into account only in an Oseen 

linear system. The analysis is heavy and explicit formulas for the lift are not obtained. 

Feng, Hu and Joseph (1994) performed numerical simulations of the motion of a two-

dimensional circular particle in Couette and Poiseuille flows. Patankar, Huang, Ko and Joseph 

(2001) and Joseph and Ocando (2002) simulated the motion of a two-dimensional circular 

particle in plane Poiseuille flows perpendicular to gravity in Newtonian and viscoelastic fluids. 

They showed that multiple equilibrium states exist for particles with intermediate densities; these 

equilibrium states can be stable or unstable.  

Relative motions between the fluid and the particle, which may be characterized by slip 

velocities, are essential to understand the lift force on the particle. We use pU  and pΩ  to denote 

the translational and angular velocities of the particle at steady state and the slip velocities are 

defined as: 

pfs UUU −= ,  the slip velocity;                                            (1.1) 

2/γ&+Ω=Ω−Ω=Ω pfps ,  the slip angular velocity,                               (1.2) 
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where fU  and γ&  are the fluid velocity and local shear rate evaluated at the location of the 

particle center in the undisturbed flow. Joseph and Ocando (2002) found that the discrepancy 

ses Ω−Ω , where seΩ  is the slip angular velocity at equilibrium, changes sign across the 

equilibrium position just as the lift force does. Thus, this discrepancy can be used to account for 

the migration toward the intermediate equilibrium position from the centerline and the wall (the 

Segrè-Silberberg effect). 

Following Joseph and Ocando’s analysis, Wang and Joseph (2003) constructed correlations 

for the lift force by analogy with the classical lift formula Γ= UL ρ  of aerodynamics; they 

showed that the proper analogs of U  and Γ  were sU  and ses Ω−Ω . Their correlations apply to 

a freely rotating two-dimensional circular particle without accelerations in a plane Poiseuille 

flow. They also demonstrated that the correlations for lift force could be made completely explicit 

provided that the correlations relating sU  and sΩ  to prescribed parameters were obtained. 

The results from two-dimensional simulations presented by Feng, Hu and Joseph (1994), 

Patankar et al. (2001), Joseph and Ocando (2002) and Wang and Joseph (2003) are difficult to 

compare with experimental results because the majority of the experiments are for spherical 

particles in circular tube flows. The lift force correlations by Wang and Joseph are for circular 

particles and can not be rigorously compared to analytical lift expressions for spheres.  All the 

above mentioned authors used a two-dimensional finite element scheme based on unstructured 

body-fitted moving grids first developed by Hu, Joseph and Crochet (1992). Recently, Hu and 

Zhu extended the two-dimensional scheme to three-dimensional and performed simulations of the 

migration of spheres in tube Poiseuille flows (see the PhD thesis of Zhu 2000). We call this 

scheme the ALE code because an arbitrary Lagrangian-Eulerian moving mesh technique has been 

adopted to deal with the motion of the particles. The three-dimensional ALE scheme is used in 

the current work to study the lift force on a neutrally buoyant sphere in tube Poiseuille flow. 

Another approach to simulate the solid-liquid flow initiated by us is based on the principle of 

embedded or fictitious domains. In this approach, the Navier-Stokes equations are solved 

everywhere, including inside the particles. The flow inside the particles is forced to be a rigid 

body motion by a distribution of Lagrange multipliers – thus we call this scheme the DLM code. 

Detailed descriptions of the DLM method can be found in Glowinski, Pan, and Periaux (1998); 

Glowinski, Pan, Hesla, and Joseph (1999); Glowinski, Pan, Hesla, Joseph, and Periaux (1999, 

2001); Singh, Joseph, Hesla, Glowinski and Pan (2000) and Glowinski (2003). The two quite 

different schemes, the DLM code and the ALE code, are both employed to simulate the motion of 

a neutrally buoyant sphere in tube Poiseuille flow in the current work. We shall show that the 
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results of the two codes are in good agreement, which provides strong support for the credibility 

of our numerical simulation. 

The main goal of this work is to extend the correlation of the lift force in terms of sU  and 

the discrepancy ses Ω−Ω  to three-dimensional cases, which would give a more convincing 

explanation for the Segrè-Silberberg effect. The lift force correlations represent efforts to draw 

explicit formulas from numerical simulation data. There is no reason why “empirical” formulas of 

the type used in engineering which correlate experimental data cannot be generated from the data 

produced by numerical simulations. Correlations have already been obtained for single particle 

lift (Patankar et al. 2001, Wang and Joseph 2003) and for the bed expansion of many particles 

(Choi and Joseph 2001, Patankar, Ko, Choi and Joseph 2001) by processing numerical data. Our 

works have establish general rules for the interrogation of data from numerical simulation to be 

used in developing models for complex fluid dynamics problems such as the fluidization by lift or 

drag.  

2. Governing equations and dimensionless parameters 

z

y

L

R

2

r

=d

mU

a

x

 
Figure E-1. Sketch for the problem of a rigid sphere in a tube Poiseuille flow. The sphere is neutrally 
buoyant and the orientation of the gravity is irrelevant.   
 

The governing equations for the incompressible Newtonian fluid are 

0=⋅∇ u  and ( )  P
t

2uguuu
∇++−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ µρρ ff                         (2.1) 

where ( )t,xu  is the fluid velocity, fρ  is the fluid density, ( )t,P x  is the pressure, g is the 

gravitational acceleration, and µ  is the fluid viscosity. We can absorb the gravity term in the 

Navier-Stokes equations into the pressure by decomposing the pressure as  
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xg ⋅+= fp ρP .                                                      (2.2) 

The equations of motion of the solid particles in a general three-dimensional case are 

[ ]
( ) ( ) [ ]( ) ,dP

dt
d

,dP
dt

d

p
p

p

∫

∫

Γ⋅+−×−=
⋅

Γ⋅+−+=

nτ1Xx
ΩI

nτ1g
U

mm
                                          (2.3) 

where m is the mass of the particle, Up is the translational velocity, pΩ  is the angular velocity, I 

is the moment of inertia tensor and Xp is the coordinate of the center of mass of the particle. We 

consider a solid sphere with a radius a and 3/4 3am p πρ= , ( )5/2diag 2ma=I . The no-slip 

condition is imposed on the particle boundaries 

)( ppp XxΩUu −×+=                                                          (2.4) 

and on the tube wall u = 0. The velocity profile at the inlet of the tube is prescribed by 

)/1( 22 RrUu m −= ,                                                            (2.5) 

where mU  is the maximum velocity at the centerline of the tube; r  is the radial position and R  

is the radius of the tube. The traction-free boundary condition is imposed at the outlet of the tube: 

0=⋅⋅≡ nTnnf ; 0=yu ; 0=zu ,                                               (2.6) 

where τIT +−= P  is the total stress tensor and n is the norm at the outlet of the tube.  

The undisturbed tube Poiseuille flow without particles is given by (2.5). The shear rate at the 

wall ( Rr = ) is given by RU mw /2=γ& . To non-dimensionalize the governing equations, we use 

the velocity waV γ&2=  as the characteristic velocity, a2  for length, Va /2  for time, aV 2/µ  

for stress and pressure, and wγ&  for angular velocity. The dimensionless equations are (we use the 

same symbols for dimensionless variables) 

0=⋅∇ u ,                                                                   (2.7) 

( )  
t

2uuuu
∇+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ pRe ,                                          (2.8) 
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                                (2.9) 

where eg is the unit vector in the direction of the gravity. The dimensionless parameters are 
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R mfwff
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, the Reynolds number;                 (2.10) 

V
ag

G fp

µ
ρρ 2)2()( −

= , the gravity number;                                (2.11) 

fp ρρ / , the density ratio.                                                (2.12) 

        It is convenient to carry out the analysis of correlations in terms of dimensionless forms of 

correlating parameters. The ratio of the sphere radius a  to pipe radius R  and the dimensionless 

radial position r  are defined by 

Raa /= , Rrr /= .                                                   (2.13) 

The dimensionless lift is given by 

2

6
πµ
ρ L

L f= .                                                           (2.14) 

The flow quantities mU , sU , sΩ , seΩ  are expressed in the form of dimensionless Reynolds 

numbers. A flow Reynolds number is given by 

28a
RRU

U emf
m ==

µ
ρ

                                                 (2.15) 

Slip velocity Reynolds numbers are defined as  

( ) µρ /2aUU sfs = , 

  ( ) µρ /2 2asfs Ω=Ω ,                                                 (2.16) 

( ) µρ /2 2asefse Ω=Ω . 

A dimensionless form of the product ( )sessU Ω−Ω  which enters into our lift law is given as 

the product  

( )sessU Ω−Ω .                                                       (2.17) 

We call the reader’s attention to the fact that the flow is in the negative x direction in our 

simulation (see figure E-1). The symbol mU  in (2.10) and (2.15) should be understood as the 

magnitude of the fluid velocity at the tube centerline. Similarly, we use the magnitude of fU  and 

pU  to calculate the slip velocity sU  defined in (1.1). 

We shall focus on the steady state flow of a neutrally buoyant sphere, in which the left side 

of (2.9) and the term gGe  in (2.9) vanish. Thus, eR  and a  are the two parameters at play. 
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3. Comparison of results 
We study the behavior of a neutrally buoyant sphere suspended in tube Poiseuille flows. A 

comparison of the numerical results using the ALE code with the experiments by Karnis, 

Goldsmith and Mason (1966) was presented by Zhu (2000). Karnis et al. performed a large 

number of experiments on the migration of spheres, rods and disks in a Poiseuille flow in a 

capillary tube. Zhu (2000) compared the trajectories of spheres released at two radio positions r  

= 0.21 and 0.68 to the trajectories measured by Karnis et al. Figure E-2 shows that the numerical 

results are in excellent agreement with the experimental ones. 

 
Figure E-2. Comparison of migration trajectories of a neutrally buoyant sphere calculated numerically 
with the ones measured in the experiments of Karnis, Goldsmith and Mason (1966). The fluid 
properties are 05.1=fρ g⋅cm-3 and 2.1=µ poises, the flow rate is 21011.7 −×=Q cm3/sec, the tube 
diameter is 4.0=D cm, and the sphere diameter is 122.0=d cm.  
 

An equilibrium for a free neutrally buoyant particle is achieved when the particle migrates to 

a radial position er  of steady rectilinear motion in which the acceleration and angular acceleration 

vanish and the hydrodynamic lift force is zero. We perform two types of simulations, 

unconstrained and constrained simulations, to find the equilibrium position. In unconstrained 

simulation, the particle moves freely until it reaches its equilibrium position, just as it would do in 

experiments. In constrained simulation, the particle is only allowed to move along a line parallel 

to the axis of the tube and rotate freely; its lateral migration is suppressed and radial position is 

fixed. When such a constrained motion reaches steady state in which the particle accelerations 

vanish, a hydrodynamic lift force L in the radial direction can be calculated. This lift force L  is a 

function of the radial position; the position where L = 0 is the equilibrium position er . In our 

constrained simulation, we place the sphere center at (y = r, z = 0) (see figure E-1), so that the lift 
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force at steady state is in y direction and z direction is the neutral direction. The only component 

of the particle translational velocity at steady state is xU  and zΩ  is the only component of the 

angular velocity. 

We compare the results of the unconstrained and constrained simulations obtained using the 

ALE code and the DLM code. In the ALE code, the typical mesh used in most of our simulations 

consists of 1.05×105 elements, 1.46×105 nodes and 1.9×104 vertices. The number of nodes for 

velocity is about 2.22×106 in the DLM code. We consider a case in which the radii of the particle 

and the tube are 0.375 cm and 2.5 cm respectively (the radius ratio a  = 0.15), the density of the 

particle and the fluid is 1g/cm3, the viscosity of the fluid is 1 poise, and 20=mU  cm/sec ( eR  = 

9). We compare the equilibrium position er  and velocities xU  and zΩ  at equilibrium calculated 

from the unconstrained simulation in table E-1. We compare the lift force ( )rL , velocities ( )rU x  

and ( )rzΩ , calculated from the constrained simulation in figure E-3. 

 
er  xU (cm/sec) zΩ (sec-1) 

ALE 0.601 12.4 4.65 
DLM 0.606 12.2 4.63 

Table E-1. The equilibrium position er  and particle velocities xU  and zΩ  at equilibrium calculated 
from the unconstrained simulation. The results of the ALE and DLM codes are almost the same. 

.                                          (a)                                                                      (b) 
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                                                                                       (c) 
Figure E-3. The steady state values of the particle velocities xU  (a) and zΩ  (b) and the lift force L  
(c), from the constrained simulation at different radial positions. The ALE and DLM results are in 
good agreement. 
 

Figures E-3.a and E-3.b show that the particle translational and angular velocities obtained 

from the DLM and ALE codes are almost the same. The agreement of the lift forces from the two 

codes in figure E-3.c is not as good as the velocities. The lift force curve from the DLM code is 

not quite smooth since this method was intended to simulate the dynamics of the interaction of 

fluid and many particles and not to compute the hydrodynamic forces explicitly. Nevertheless, we 

regard the agreement in figure E-3.c acceptable, considering the challenging nature of the three-

dimensional simulation. Due to mesh adaptivity, the ALE code is more suited to accurate 

computation of lift. We will use the data from the ALE code to construct the lift correlations in 

the following section. 

Our two different codes give results in good agreement with each other and with 

experiments, which demonstrates that our numerical simulation is credible. 

4. Correlations from the numerical simulation 
Numerical experiments using constrained simulation provide us with the distribution of the 

lift force and particle velocity in the tube and the position and velocity of the particle at 

equilibrium. We develop correlations for these quantities in this section. The key correlation is for 

the lift force, which shows the dependence of the lift force on the slip angular velocity 

discrepancy ses Ω−Ω . The lift force correlation predicts the change of sign of the lift force, 

which is necessary to explain the two-way migration in the Segrè-Silberberg effect. The 

correlations for the equilibrium state of the particle are also of interest, because they may be used 

to predict the position and the velocities of the particle at equilibrium. 
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4.1 Correlation for the lift force 
The steady state values of the lift forces on a sphere at different radial positions computed in 

constrained simulation are plotted in figure 4 for a sphere with the radius ratio a  = 0.15. The 

positive direction of the lift force is in the negative re  direction. In other words, L  is positive 

when pointing to the centerline and negative when pointing away from the centerline. 

                                                                            (a) 

(b) 
Figure E-4. The dimensionless lift force L  at different radial positions for a sphere with the radius 
ratio a  = 0.15. The two curves in (a) correspond to eR  = 1 and 2, and the four curves in (b) 
correspond to eR  = 9, 13.5, 18 and 22.5, respectively. The magnitude of the lift force increases with 
the Reynolds number.  
 

The equilibrium positions of a neutrally buoyant sphere are the points where L  = 0. The 

stability of the equilibrium at a zero-lift point can be determined from the slope of the L  vs. r  

curve. The centerline is on a negative-slope branch of the L  vs. r  curve. When a particle is 

disturbed away from the centerline, the lift force is negative and drives the particle further away 
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from the centerline. Therefore the centerline is an unstable equilibrium position. The other zero-

lift point is between the centerline and the wall and it is on a positive-slope branch of the curve. 

When the particle is disturbed away from this point, the lift force tends to push the particle back. 

Thus the zero-lift point between the centerline and the wall is a stable equilibrium position.  

Figure E-4 shows that this stable equilibrium position er  moves towards the wall as the Reynolds 

number increases. 

We seek expressions for the lift force in terms of the slip velocities. The slip velocity 

Reynolds numbers have been defined in (2.16). We plot ses Ω−Ω  at different radial positions in 

figure E-5 for a sphere with a  = 0.15. Comparison of figure E-4 and figure E-5 shows that the 

discrepancy ses Ω−Ω  changes sign across the equilibrium position, just like the lift force L  

does. 
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Figure E-5. The dimensionless slip angular velocity discrepancy at different radial positions for a 
sphere with a  = 0.15. The two curves in (a) correspond to eR  = 1 and 2, and the four curves in (b) 
correspond to eR = 9, 13.5, 18 and 22.5, respectively.  
 

If we fix the radius ratio a = 0.15 and continue to increase the Reynolds number, the 

distribution of the lift force as a function of the radial position becomes more complicated. We 

plot the L vs. r  curves for eR  = 27, 36 and 45 in figure E-6. There is a change of convexity in 

the curves and a local minimum of the lift force exists at approximately r  = 0.55. On each of the 

curves, there exist two branches on which the slope of the curve is negative. The first negative-

slope branch is at the centerline; the second negative-slope branch is in the middle between the 

centerline and the wall. The second negative-slope branch does not exist when the Reynolds 

number is small ( eR  = 1, 2, 9, 13.5, 18 or 22.5). The exact range of the second negative-slope 

branch varies with the Reynolds number; we may say that the range 0.5 ≤ r ≤ 0.65 covers the 

second negative-slope branches of the curves for eR  = 27, 36 and 45. We found that it was 

difficult for the constrained simulations in this range at high Reynolds numbers to converge to a 

steady state; a refined mesh was necessary to obtain converged results in these simulations. For 

example, when 1=eR , the typical mesh used in our simulations consists of 41009.9 ×  elements, 

51028.1 ×  nodes and 41068.1 ×  vertices; when 45=eR , the typical mesh consists of 

41086.9 ×  elements, 51039.1 ×  nodes and 41082.1 ×  vertices. 

Figure E-6. The dimensionless lift force L  at different radial positions for a sphere with a  = 0.15. 
The three curves corresponds to eR = 27, 36 and 45, respectively. On each of the curve, there exist 
two branches on which the slope of the curve is negative. 
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Similar complicated distributions of the lift force can be observed in Asmolov’s (1999) 

calculation of the lift force on a small neutrally buoyant sphere in a plane Poiseuille flow. In his 

figure E-8, the lift is plotted as a function of d/l, where d is the distance from the wall to the 

particle center and l is the channel width. Five curves for five channel Reynolds numbers cR  = 

15, 100, 300, 1000 and 3000 are plotted. There is only one negative-slope branch on the curves 

for cR  = 15 and 100, which is at the centerline. There are two negative-slope branches on the 

curves for cR  = 300, 1000 and 3000. One of the branches is at the centerline and the other is 

between the centerline and the wall. Both our numerical simulation and Asmolov’s (1999) 

calculation using matched asymptotic methods show that at high eR , there exists a local 

minimum of the lift force between the centerline and the stable equilibrium position. This 

observation prompts us to consider the possibility of multiple equilibrium positions for neutrally 

buoyant particles in Poiseuille flows.  

Matas, Morris and Guazzelli (2004) measured lateral migration of dilute suspensions of 

neutrally buoyant spheres in pipe flows; they observed single equilibrium positions when mU  is 

low (60, 350) and multiple equilibrium positions when mU  is high (760). In their experiments 

using spheres with 06875.0=a  in flows with 760=mU , they observed a first equilibrium 

position close to the wall and a second equilibrium position at 2.05.0 ±=r . They also reported 

that when mU  is increased to 1500, the first equilibrium position close to the wall disappeared 

and the second equilibrium position became the only equilibrium position. Matas, Morris and 

Guazzelli proposed to explain the second equilibrium position using the change of convexity in 

the lift force profiles obtained from the matched asymptotic methods. They argued that the 

particles could accumulate in the region near the local minimum of the lift force. 

 In numerical simulations, Patankar, Huang, Ko and Joseph (2001) reported multiple 

equilibrium positions for particles heavier than the fluid in plane Poiseuille flows perpendicular to 

the gravity. We have not obtained multiple equilibrium positions in simulations for a neutrally 

buoyant sphere in pipe flows. We are not able to run simulations matching the experimental 

conditions under which multiple equilibrium positions were observed. From figure E-6, it seems 

possible that a second stable equilibrium position appears near 55.0=r  at higher Re. It is also 

possible that the second equilibrium position arises from particle interaction in the experiments. 

The existence of multiple equilibrium positions for a single neutrally buoyant particle in a pipe 

flow is still an open question.   
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The ses Ω−Ω  vs. r  curves for the cases with a  = 0.15 and Re = 27, 36 or 45 are plotted in 

figure E-7. Our assertion that the lift force changes sign with the discrepancy ses Ω−Ω  remains 

true for Re = 27 and 36 but not for Re = 45. When Re = 45, ses Ω−Ω  changes sign twice in the 

range 0 < r  < 0.5 (figure E-7); however, the lift force remains negative in the same range (figure 

E-6). Our assertion is true in the vicinity of the stable equilibrium position at all the Reynolds 

numbers, which will be the region in which the lift correlation is developed. 

Figure E-7. The dimensionless slip angular velocity discrepancy at different radial positions for a 
sphere with a  = 0.15. The three curves correspond to eR  = 27, 36, and 45, respectively. 
 

We seek correlations between the lift force L  and the product  

( )sessUF Ω−Ω= .                                                          (4.1) 

From our data, we noted that in the vicinity of the stable equilibrium position, the relation 

between L  and F may be represented by a linear correlation: 

( ) ( ) ( )aRrFaRkaRrL eee ,,,,, = ,                                             (4.2) 

where k is the proportionality coefficient which depends on the Reynolds number and the radius 

ratio a . Some examples of the linear correlation between L  and F are plotted in figure E-8 and 

the values of k are listed in table E-2. The linear correlation (4.2) is not valid far away from the 

equilibrium position; we also list the range of the radial position in which the linear correlation is 

valid in table E-2.  
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Figure E-8. The linear correlation between L  and F in the vicinity of the stable equilibrium position 
of a neutrally buoyant particle. (a) eR  = 1, a  = 0.15; (b) eR  = 9, a  = 0.15; (c) eR  = 18, a  = 0.15; 
(d) eR  = 1, a  = 0.1; (e) eR  = 4, a  = 0.1; (f) eR  = 8, a  = 0.1. 
 

a  eR  k equilibrium position er  range of the linear correlation 
1 742 0.603 0.2 ≤ r  ≤ 0.7 
2 620 0.608 0.3 ≤ r  ≤ 0.7 
4 325 0.638 0.4 ≤ r  ≤ 0.75 
6 268 0.661 0.55 ≤ r  ≤ 0.75 
8 254 0.674 0.6 ≤ r  ≤ 0.75 

10 201 0.684 0.6 ≤ r  ≤ 0.75 

  0.1 

12 169 0.708 0.65 ≤ r  ≤ 0.8 
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2 346 0.573 0.3 ≤ r  ≤ 0.6 
9 130 0.601 0.4 ≤ r  ≤ 0.65 
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22.5 53.5 0.657 0.55 ≤ r  ≤ 0.7 
27 56.5 0.670 0.6 ≤ r  ≤ 0.75 
36 69.8 0.691 0.65 ≤ r  ≤ 0.75 
45 85.2 0.700 0.67 ≤ r  ≤ 0.75 

Table E-2. The values of the proportionality coefficient k and the equilibrium position er  as functions 
of the radius ratio a  and eR . The range of the radial position in which the linear correlation (4.2) is 
valid is also listed.  

The value of k decreases as eR  increases when the Reynolds number is low. However, k 

increases as eR  increases when 27≥eR . This change is possibly related to the emergence of the 

second negative-slope branch on the L  vs. r  plot at high Reynolds numbers. We shall focus on 

the low Reynolds number cases and data fitting analyses lead to expressions for k  in terms of the 

Reynolds number: 
604.0809 −= eRk , for a  = 0.1   and 121 ≤≤ eR ;                                (4.3) 

658.0450 −= eRk , for a  = 0.15 and 5.221 ≤≤ eR .                             (4.4) 

Inserting the expression of k  into the linear correlation (4.2), we can obtain the correlations 

between L  and F . To reveal the dependence of the lift force on the slip velocities explicitly, we 

substitute the definitions of L  and F  into the linear correlation and it follows that 

( )( )3604.0 2424 aURL sessfe Ω−Ω= − ρ ,   for a  = 0.1;                   (4.5) 

( )( )3658.0 2236 aURL sessfe Ω−Ω= − ρ ,   for a  = 0.15.                 (4.6) 

Both of these two correlations are analogous to the lift correlation we obtained in the two-

dimensional cases (Wang and Joseph 2003):  

( )( )2515.0 26.182 aURL sessfe Ω−Ω= − ρ ,   (4.7) 

which is for the lift force per unit length on a cylindrical particle whose diameter is 1/12 of the 

channel width. It is noted that the exponent of the Reynolds number is –0.604 in (4.5) and it is 

closer to the value –0.515 in (4.7).  

The lift force in our correlation is on a freely rotating particle translating at steady velocity. 

Thus correlations (4.5) and (4.6) apply to particles with zero acceleration. For a migrating particle 

with substantial acceleration, correlations (4.5) and (4.6) may not be valid. 

4.2 Correlations for the slip velocity Us and slip angular velocity Ωs  
Besides the lift force on the particle, the translational and angular velocities of the particle at 

steady state are also of interest. We shall construct correlations for the slip velocity sU  and slip 
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angular velocity sΩ  from constrained simulations; the particle velocities can then be easily 

computed using (1.1) and (1.2). The correlations for sU  and sΩ  are necessary to compute the lift 

force, because they appear in the lift correlations (4.5) and (4.6). 

We illustrate the correlation construction for a particle with the radius ratio a  = 0.15. We 

plot the Reynolds number sΩ  on log-log plots versus eR ; straight lines one for each value of r  

are obtained. Similar straight lines on log-log plots are obtained when we plot sU  versus eR . 

Examples of such plots are shown in figure E-9.a and 9.b for sΩ  vs. eR  and sU  vs. eR , 

respectively.  

                                                                          (a)  

                                                                                  (b)  

Figure E-9. Power law correlations of (a) sΩ  vs. eR  and (b) sU  vs. eR  at different values of r  for a 
sphere with 15.0=a .  

Power law correlations arise from the straight lines in log-log plots for sΩ  and sU  

( ) ( ) ( )arm
ees RarbaRrU ,,,, = ,                                            (4.8) 
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( ) ( ) ( )arn
ees RarcaRr ,,,, =Ω .                                            (4.9) 

The coefficients b, m, c, and n are obtained for a particle with a  = 0.15 in the range 0.1 ≤ r  ≤ 

0.8 and plotted in figure E-10. Exponential fitting and linear fitting may give reasonable 

approximations to the prefactors b and c and exponents m and n, respectively: 

( )rb 2.2exp101.1 2−×= ,  ( )rc 8.8exp103.2 5−×= ;  (4.10)  

6.11.1 +−= rm ,  7.21.2 +−= rn .   (4.11) 

Substitution of (4.10) and (4.11) into (4.8) and (4.9) leads to explicit expressions for sU  and sΩ  

( ) 6.11.12 2.2exp101.1 +−−×= r
es RrU ,                                   (4.12) 

( ) 7.21.25 8.8exp103.2 +−−×=Ω r
es Rr ,                                   (4.13) 

which apply to a particle with a  = 0.15 in the range 0.1 ≤ r  ≤ 0.8. Correlation (4.12) and (4.13) 

are generally valid in the range of 1 ≤ Re ≤ 45. However, correlation (4.12) is not in good 

agreement with the data for sU  on the second negative-slope branch on the L  vs. r  curve (0.5 ≤ 

r  ≤ 0.65) at high Reynolds numbers (Re = 27, 36 and 45). Thus correlation (4.12) in the range 

0.5 ≤ r  ≤ 0.65 is valid only for 1 ≤ Re ≤ 22.5. 
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Figure E-10. The prefactors b and c and exponents m and n in correlations (4.8) and (4.9) for a particle 

with a  = 0.15 in the range 0.1 ≤ r  ≤ 0.8. 

Correlations for sU  and sΩ  for a  = 0.1 are developed using the same procedure as for a  

= 0.15. We omit the details of derivation and only give the final formulas for sU  and sΩ  

( ) 9.14.13 8.1exp103.8 +−−×= r
es RrU ,                                        (4.14) 

( ) 8.33.36 0.9exp107.7 +−−×=Ω r
es Rr ,                                        (4.15) 

which apply to a particle with a  = 0.1 in the range 0.05 ≤ r  ≤ 0.85. The range of the Reynolds 

number in which (4.14) and (4.15) is valid is 1 ≤ Re ≤ 12. 

4.3. Correlations for the particle parameters at equilibrium 
 The equilibrium state of a particle is always the focus of the study of particle migration. We 

obtain the particle parameters at stable equilibrium, such as the equilibrium position er , the slip 

velocity Use and the slip angular velocity Ωse by unconstrained simulation and find that they may 

be correlated to the Reynolds number. We summarize the particle parameters at stable 

equilibrium in table E-3.  

a  Re mU  er  seΩ  seU  
0.05 2 100 0.731 0.00710 0.0247 

1 12.5 0.603 0.00188 0.0219 
2 25 0.608 0.00509 0.0444 
4 50 0.638 0.0209 0.0901 
6 75 0.661 0.0498 0.152 
8 100 0.674 0.0901 0.470 

10 125 0.684 0.139 0.712 

0.1 

12 150 0.708 0.202 0.296 
1 5.56 0.573 0.00354 0.0338 
2 11.1 0.573 0.00765 0.0675 
9 50 0.601 0.0861 0.306 

13.5 75 0.623 0.197 0.482 
18 100 0.642 0.342 0.730 

22.5 125 0.657 0.513 0.785 
27 150 0.670 0.705 1.07 
36 200 0.691 1.16 1.18 

0.15 

45 250 0.700 1.67 1.74 
0.2 32 100 0.598 0.793 1.74 

0.25 50 100 0.567 1.49 2.84 
 

Table E-3. Particle parameters at stable equilibrium: the equilibrium position er , the dimensionless 

slip angular velocity ( ) µρ /2 2asefse Ω=Ω  and the dimensionless slip velocity 

( ) µρ /2aUU sefse = . 
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Figure E-11. The stable equilibrium position er  of a neutrally buoyant sphere as a function of the 
Reynolds number. The two power law curves are for spheres with a  = 0.10 and a  = 0.15 
respectively. All the points on the dotted line are for the same flow Reynolds number mU  = 100; the 

dotted line shows that when mU  is fixed, the equilibrium position becomes closer to the centerline as 
a  increases. 

We can correlate the stable equilibrium position of a neutrally buoyant sphere with the 

Reynolds number (see figure E-11): 
0644.0591.0 ee Rr =      for a  = 0.1;                                           (4.16) 

0546.0555.0 ee Rr =      for a  = 0.15.                                          (4.17) 

The equilibrium position er  moves closer to the wall as the Reynolds number increases. We also 

observe that when the flow Reynolds number mU  is fixed, the larger particle finds its equilibrium 

position closer to the centerline than the smaller particle. The above observations are in 

agreement with the experiments by Karnis, Goldsmith and Mason (1966), who reported that 

neutrally buoyant particles stabilized closer to the wall for larger flow rates and closer to the 

center for larger particles. 

Matas, Morris and Guazzelli (2004) reported that for neutrally buoyant spheres with a 

diameter 900=d µm in the pipe of diameter 8=D mm, the equilibrium position is er  = 

0.64 ± 0.04 for 60=mU  and 04.078.0 ±=er  for mU = 350. The value of a  is close to 0.1 in 

these experiments, thus we can compare correlation (4.16) to the experimental results. Equations 

(4.16) and (2.15) predict er  = 0.654, 0.732 for mU = 60, 350 respectively, in good agreement 
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with the experimental results. Matas, Morris and Guazzeli (2004) stated that the matched 

asymptotic calculation (Schonberg & Hinch 1989, Asmolov 1999) predicts that er  = 0.71, 0.85 

for mU  = 60, 350 respectively, in both cases larger than the experimental value. They attributed 

this difference to the relatively large size of the particles. They reported that when smaller 

particles (200 µm) were used in the experiments, equilibrium positions were closer to the 

theoretical predictions. The actual values of er  for 200 µm particles are not reported in their 

paper, but we can infer that er  for 200 µm particles is larger than er  for 900 µm particles at the 

same mU . This agrees with our conclusion that the larger particle finds its equilibrium position 

closer to the centerline than the smaller particle at a fixed mU . 

If we correlate the dimensionless slip angular velocity at equilibrium seΩ  with the Reynolds 

number Re, we obtain (see figure E-12) 
72.10023.0 ese R=Ω  i.e. ( )272.1 4/0023.0 aR fese ρµ=Ω .                      (4.18) 

This correlation appears to be applicable to a wide range of the radius ratio: 0.05 ≤ a  ≤ 0.25. 

Correlation (4.18) is important because it gives explicitly the slip angular velocity when the 

particle is at stable equilibrium.   

Figure E-12. The correlation between seΩ  and the Reynolds number eR . 

Now with all the correlations for k , sU , sΩ , and seΩ  available, we are at a position to 

make the lift correlation (4.2) completely explicit. Take a particle with a  = 0.15 for example, 

( )sessUkL Ω−Ω= ,                                                   (4.19) 
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where k , sU , sΩ , and seΩ  are given in (4.4), (4.12), (4.13) and (4.18) respectively. Therefore, 

we are able to compute the lift force on a particle at different radial positions from the Reynolds 

number and radius ratio. It should be noted that the lift force applies to a freely rotating particle 

translating at a steady speed. 

If we set L  in (4.19) to zero, we can solve for the equilibrium position er . The value 

0=L  is given by ses Ω=Ω ; this leads to a formula for the equilibrium position 

e

e
e R

Rr
ln1.28.8
ln98.06.4

−
−

= ,                                                   (4.20) 

for a particle with a  = 0.15 which can be compared to correlation (4.17).  Formula (4.17) and 

(4.20) give rise to similar values for er  in the range 1 ≤ Re ≤ 22.5 (see figure E-13); (4.17) gives a 

better approximation to the simulation results because it is directly developed for er . When 

5.22>eR , the agreement is not good between (4.17) and (4.20). 

 
 

 

Figure E-13. The values of er  computed by equations (4.17) and (4.20) in the range 1 ≤ Re ≤ 22.5 for 
15.0=a . 

       A summary of our correlations is presented in Table E-4 below. Correlation formula 

exhibiting the dependence of prefactors and exponents on a  requires more computation. 
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Table E-4. Structure of the correlations for the lift law 

5. Comparison of lift expressions 
Wang and Joseph (2003) compared the lift correlation (4.7) with analytical lift expressions 

in the literature. Their comparison was limited because the correlation (4.7) is for a two-

dimensional cylindrical particle whereas the lift expressions of Saffman (1965, 1968) and Auton 

(1987) are for a sphere. A comparison between correlations (4.5) and (4.6) with the 

aforementioned analytical lift expressions is more sensible; though the comparison is still 

tentative because the analytical lift expressions are for a particle in a linear shear flow on an 

unbounded domain whereas our 3D simulation is in a tube Poiseuille flow. We will compare the 

correlation (4.5) to the analytical lift expressions with these caveats in mind. 

Auton (1987) derived a lift expression for a fixed sphere in an inviscid fluid in which 

uniform motion is perturbed by a weak shear: 

L = )( 
3
2 3 Uuω −×ρπa .                                                  (5.1) 

In the case under consideration, γ&zeω =  and sUxeUu =− ; the lift force in y direction is  

γρπ &sUaL 3

3
2

= ,                                                        (5.2) 

( ) ( )arm
es RarbU ;;=  

( ) 6.11.12 2.2exp101.1 +−−×= r
es RrU             for 15.0=a  

( ) 9.14.13 8.1exp103.8 +−−×= r
es RrU              for 1.0=a  

 

72.10023.0 ese R=Ω                       25.005.0 ≤≤ a  
                                            applicable to a wide range of a  

( ) ( )aq
ee Rafr =                    a             ( )af            ( )aq  

                                              0.1            0.591          0.0644 
                                           0.15          0.555          0.0546
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which is similar to our correlation (4.5) but differs from them in several ways: (5.2) has a 

constant prefactor for inviscid fluids whereas viscous effects enter into (4.5) through eR ;  the lift 

force depends on γ&  in (5.2) but on the discrepancy ses Ω−Ω  in (4.5);  (5.2) is for a fixed 3D 

sphere while (4.5) is for a freely rotating sphere with zero acceleration.  

Saffman 1965, 1968 obtained an expression for the lift force on a rotating sphere in an 

unbounded linear shear flow at indefinitely small Reynolds number: 

sorder termlower 46.6 25.05.05.0 += aUL sf γµρ & .   (5.3) 

If we make following changes in equation (4.5): µγρ /)2( 2aR wfe &= , the power of eR  )604.0(−  

→  )5.0(− , then equation (4.5) becomes: 

25.05.05.0 )(1696 aUL seswsf Ω−Ω= −γµρ & .                                       (5.4) 

Comparing (5.4) and the leading term in (5.3), we note that both expressions are linear in sU ; 

both have a similar dependence on fρ , µ , and a . However, the dependence on γ&  and 

ses Ω−Ω  is greatly different. 

For a neutrally buoyant particle at equilibrium, L = 0 and equations (5.2) and (5.3) imply Us 

= 0. The Auton and Saffman formulas thus predict that the slip velocity is zero for a neutrally 

buoyant sphere at equilibrium.  

McLaughlin (1991) generalized Saffman’s analysis to remove the restriction that the 

Reynolds number sU  based on slip velocity sU  is much smaller than the square root of the 

Reynolds number eR  based on the shear rate and derived an expression for the lift force: 

  , )(
255.2

6.46 20.50.55.0 εγµρ JaUL sf &=                                     (5.5) 

where 

µ
ρ

µ
γρ

ε
aU

U
a

R
U
R sf

s
f

e
s

e 2
,

)2(
 , 

2

===
&

 

and J is a function of ε only and has a value of 2.255 as ε → ∞ (the Saffman limit). Equation (5.5) 

shows that zero lift force is obtained when 0=sU  or ( ) 0=εJ . The solution provided by 

McLaughlin gives ( ) 0=εJ  at 215.0=ε , i.e., 215.0/es RU = . Hence, sU  is not single 

valued for 0=L .  
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In the lift expressions given by Auton, Saffman, and McLaughlin, zero lift force is 

determined by the slip velocity sU . This is not the case in our simulation for a sphere in tube 

Poiseuille flows; our results show that ses Ω=Ω  gives rise to zero lift. The difference may be 

due to the fact that linear shear flow has a zero shear gradient whereas the shear gradient in 

Poiseuille flow is a constant and not small.  

6. Conclusion and discussion 
● The motion of a single neutrally buoyant rigid sphere in tube Poiseuille flow is simulated 

by two methods: (1) an ALE arbitrary Lagrangian-Eulerian scheme with a moving adaptive mesh 

and (2) a DLM distributed Lagrange multiplier / fictitious domain method. The two methods give 

the same results, and the simulation agrees with experiments. 

● A lift law ( )sessCUL Ω−Ω=  analogous to Γ= UL ρ  of classical aerodynamics which 

was proposed and validated in two dimensions is validated in three dimensions here; sU  is the 

slip velocity and it is positive, sΩ  is the slip angular velocity and seΩ  is the slip angular velocity 

when the sphere is in equilibrium at the Segré-Silberberg radius. 

● The slip angular velocity discrepancy ses Ω−Ω  is the circulation for the free particle and 

it is shown to change sign with the lift. 

● Numerical experiments using the method of constrained simulation generated data for the 

lift force and velocities of a freely rotating sphere in steady flows arising from initial value 

problems in which the sphere is constrained to move at a fixed radius. 

● Constrained simulations are very efficient. The lift and all velocities are obtained for 

different radii at each specified Reynolds number and radius ratio Raa /= . 

● Equilibrium may be identified at the Segré-Silberberg radius at which the lift vanishes 

(for a neutrally buoyant particle). The equilibrium slip angular velocity is the slip angular velocity 

at this equilibrium radius. 

● Data generated by constrained simulations are processed for straight lines in log-log plots 

and give rise to get explicit power-law formula for all the quantities in the lift law as a function of 

eR  and a . We go from data to formulas. 

● The equilibrium position (the Segré-Silberberg radius) moves towards the wall as eR  

increases at each fixed a ; it moves towards the centerline as a  increases at a fixed flow 

Reynolds number mU . 
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● Our correlations are compared with analytical lift formulas in the literature. None of the 

analytic formulas for lift change sign at Segré-Silberberg radius. These formulas also leave the 

form of the slip velocity sU  obscure. 

The lift law we have proposed for free circular and spherical particles is analogous to the 

aerodynamic lift law ΓUρ  in the case of a rotating circle for which Ω=Γ 22 aπ . It is probable 

that the lift law for free bodies of more general shape is in the form ssCUL Γ=  where C depends 

on fluid properties and geometric parameters and sΓ  is unknown. The determination of Γ  even 

in aerodynamic theory is a complicated problem. In airfoil theory, Γ  is strongly coordinated with 

the attack angle of the airfoil. A similar coordination of the circulation with the attack angle is 

apparently generated by the motion of a free ellipse in a plane Poiseuille flow (Feng, Huang and 

Joseph, 1995). This problem could be framed in terms of the equilibrium position and orientation 

of an ellipse in a plane Poiseuille flow. As in the case of circular particles, the equilibrium 

position is decided by a balance of buoyant weight and lift, where the lift arises as a competition 

of forces arising from shear gradients and wall effects. This problem ought to be studied by the 

technique of constrained simulation discussed here. At each fixed y, the motion of the ellipse 

would evolve to a steady state with a fixed angle of attack. This lift on the ellipse at this y could 

be computed and, of course, as in the case of circular and spherical particles, this lift would 

balance the buoyant weight, zero for neutrally buoyant particles, at equilibrium, with a certain 

equilibrium attack angle. The lift must change sign with the attack angle discrepancy. 

This paper aims at presenting a general procedure and data structure for the interrogation of 

numerical simulation data. Our goal is to draw explicit formulas from numerical data, which may 

be used to model complex problems, obviating further expensive computation. The procedure 

involves identifying controlling dimensionless groups and data fitting analyses which lead to 

expressions for the quantities of interest in terms of prescribed parameters. We believe when 

properly used, this procedure may help to reveal the underlying physics of the problem and 

generate practically useful formulas at the same time.  
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